K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

Chọn B

NV
2 tháng 4 2021

\(y'=8x^3-8x\)

a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)

\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)

\(y'\left(-2\right)=47\)

Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)

b. Gọi tiếp điểm có hoành độ \(x_0\) 

Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)

Do tiếp tuyến qua A:

\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)

\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)

Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được

7 tháng 10 2019

Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{4}x^2-mx-4=0\)

\(\Leftrightarrow x^2+4mx+16=0\)

\(\Delta=\left(4m\right)^2-4\cdot1\cdot16=16m^2-64\)

Để hai đồ thị tiếp xúc với nhau thì 16m2-64=0

=>m=2 hoặc m=-2

3 tháng 7 2017

26 tháng 6 2019

Đáp án C

Phương trình hoành độ giao điểm của (C) và d là:

(*)

 

(C) cắt d tại hai điểm phân biệt có hai nghiệm phân biệt x1, x2

 

Gọi là các giao điểm của (C) và d với  

Khi đó

 

 

Ngoài ra, ta có thể kiểm tra sau khi có Khi đó, ta loại các phương án m = 1; m = 5

Thử một phương án m = -2, ta được phương trình:

 

10 tháng 4 2018

22 tháng 9 2018

Chọn D

18 tháng 10 2017

Chọn C.

Phương pháp

Xét phương trình hoành độ giao điểm.

Đường thẳng cắt đồ thị (C) tại hai điểm phân biệt nếu phương trình hoành độ giao điểm có hai nghiệm phân biệt.

Cách giải:

ĐKXĐ: x  ≠ 1

Xét phương trình hoành độ giao điểm  x - 1 x + 1 = -x + m (*)

Với  -1 thì (*)  ⇔ x - 1 = (x+1)(-x+m)

 

Đường thẳng y = -x + m cắt đồ thị  tại hai điểm phân biệt phương trình (**) có hai nghiệm phân biệt khác -1.

Vậy m ∈ ℝ