Biết số phức z thỏa mãn điều kiện z - 3 - 4 i = 5 và biểu thức P = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Tính z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Đặt z = x + yi (x,y ∈ Z) => Tập hợp các điểm M là đường tròn (C) có tâm I(3;4), bán kính R = 5
Ta có
Ta cần tìm P sao cho đương thẳng (∆) và đường tròn (C) có điểm chung ó d(I;( ∆))≤ R
Do đó maxP = 33. Dấu “=” xảy ra
Vậy |z| = 5 2
Tập hợp các điểm z thỏa mãn điều kiện z - 1 = 2 là đường tròn (C) tâm I(1;0) bán kính R = 2
Gọi M là điểm biểu diễn cho số phức z, A(0,-1) là điểm biểu diễn cho số phức -i, B(2;1)là điểm biểu diễn cho số phức 2+i
Đáp án D
Đáp án D
Phương pháp: Đưa biểu thức T về dạng biểu thức vector bằng cách tìm các vecto biểu diễn cho các số phức.
Cách giải:
Tập hợp các điểm z thỏa mãn điều kiện là đường tròn (C) tâm I(1;0) bán kính R= 2
Gọi M là điểm biểu diễn cho số phức z, A(0;-1) là điểm biểu diễn cho số phức -i, B(2;1) là điểm biểu diễn cho số phức 2+i
Dễ thấy A,B ∈ C và
AB là đường kính của đường tròn (C)
vuông tại M
Đặt
Xét hàm số trên ta có:
Vậy maxT=4
Đáp án D.