K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

phương trình có nghiệm \(\Leftrightarrow a\ne0\) hay\(m-1\ne0\Leftrightarrow m\ne1\)

5: Để A nguyên thì \(x^2-4+6⋮x+2\)

\(\Leftrightarrow x+2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{-1;-3;0;-4;1;-5;4;-8\right\}\)

10 tháng 1 2022

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.

 

28 tháng 10 2021

Ta có: ΔABC đều

mà BP,CM là các đường trung tuyến

nên BP,CM là các đường cao

Xét tứ giác BMPC có 

\(\widehat{BMC}=\widehat{BPC}=90^0\)

nên BMPC là tứ giác nội tiếp

hay B,M,P,C cùng thuộc 1 đường tròn

24 tháng 9 2021

1) \(\sqrt{\dfrac{1}{200}}\)                            2) \(\dfrac{5}{1-\sqrt{6}}\)

\(=\sqrt{\dfrac{1^2}{10^2.2}}\)                          \(=\dfrac{1-\sqrt{6}+4+\sqrt{6}}{1-\sqrt{6}}\)

\(=\dfrac{1}{10\sqrt{2}}\)                              \(=1+\dfrac{4+\sqrt{6}}{1-\sqrt{6}}\)

24 tháng 9 2021

Bài 2: 

1. \(\sqrt{2x-5}=7\)    ĐKXĐ: \(x\ge\dfrac{5}{2}\)

<=> 2x - 5 = 72

<=> 2x - 5 = 49

<=> 2x = 54

<=> x = 27 (TM)

2. \(3+\sqrt{x-2}=4\)     ĐKXĐ: \(x\ge2\)

<=> \(\sqrt{x-2}=1\)

<=> x - 2 = 1

<=> x = 3 (TM)

3. \(\sqrt{x^2-2x+1}=1\)

<=> \(\sqrt{\left(x-1\right)^2}=1\)

<=> \(|x-1|=1\)

<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4. \(\sqrt{x^2-4x+4}=1\)

<=> \(\sqrt{\left(x-2\right)^2}=1\)

<=> \(|x-2|=1\)

<=> \(\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5. \(\sqrt{4x^2+1-4x}=\sqrt{x^2+16+8x}\)

<=> \(\left(\sqrt{4x^2+1-4x}\right)^2=\left(\sqrt{x^2+16+8x}\right)^2\)

<=> \(|4x^2+1-4x|=|x^2+16+8x|\)

<=> \(\left[{}\begin{matrix}4x^2+1-4x=x^2+16+8x\\4x^2+1-4x=-\left(x^2+16+8x\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x^2-x^2-4x-8x+1-16=0\\4x^2+1-4x=-x^2-16-8x\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}3x^2-12x-15=0\\5x^2+4x+17=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}3x^2+3x-15x-15=0\\VNghiệm\end{matrix}\right.\)

<=> 3x(x + 1) - 15(x + 1) = 0

<=> (3x - 15)(x + 1) = 0

<=> \(\left[{}\begin{matrix}3x-15=0\\x+1=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)