K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

𝑥=2                                                                                                                                                        𝑥=3 lp sáu khó nhỉ

21 tháng 11 2021

\(3\times\left(2x+1\right)^2=75\)

\(\Rightarrow\left(2x+1\right)^2=75\div3\)

\(\Rightarrow\left(2x+1\right)^2=25\)

\(\Rightarrow\left(2x+1\right)^2=5^2\)

\(\Rightarrow2x+1=5\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=2\)

# Kukad'z Lee'z

3 tháng 9 2016

1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)

\(\Rightarrow DK:\left(x+1\right)^2\ge4\)

4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)

 \(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)

K biết đúng k.. Sai thôi

3 tháng 9 2016

1)    tc :     x+ 2x +3  =   x2 + 2x + 1 + 2   =   (x+1)2 +2 > 0 vs mọi x

     => căn thức có nghĩa vs mọi x

2)    tương tự câu 1:   x2 - 2x + 2  =  (x-1)2 +1   >    0   vs mọi x

        => căn thức có nghĩa vs mọi x

3)    \(\sqrt{x^2+2x-3}\)có nghĩa    <=>  x2+2x-3\(\ge0\)

                                                          <=> (x+1)2 - 4 \(\ge0\)

                                                        <=> (x+1)2 \(\ge4\)

                                                         <=> x+1 \(\ge2\)

                                                         <=> x \(\ge1\)

4) \(\sqrt{2x^2+5x+3}\)có nghĩa   <=>  2x2 +5x +3 \(\ge0\)

                                                      <=> 2x2 + 2x + 3x + 3 \(\ge0\)

                                                      <=> (2x+3)(x+1) \(\ge0\)

                                                       <=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\)  hoặc    \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)

                                                     <=>  \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\)        hoặc   \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)

                                                    <=>   \(\frac{-3}{2}\le x\le-1\)

1: Ta có: \(\left(3-x\right)^2+\left(2x+1\right)^2-\left(2-x\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

2: Ta có: \(\left(1-2x\right)^2-3\left(x-1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow4x^2-4x+1-3x^2+6x-3+\left(x+1\right)^2-2\left(x-1\right)^2=0\)

\(\Leftrightarrow x^2+2x-2+x^2+2x+1-2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2x^2+4x+1-2x^2+4x-2=0\)

\(\Leftrightarrow x=\dfrac{1}{8}\)

19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2

1.too 2.either 3.either 4.too 5.too

31 tháng 12 2021

1 too

2 either

3 either

4 too 

5 too

1 tháng 8 2016

\(A=\frac{-1}{2x+3}\)
Để A có giá trị nguyên thì -1 phải chia hết cho 2x+3
                            hay 2x+3\(\in\)Ư(-1)={1;-1}
                             =>x={-1;-2}

16 tháng 9 2017

mình không biết 

16 tháng 9 2017

Pt tương đương:

\(2x^2+3\left(x^2-1\right)=5x^2+5x\)

\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Leftrightarrow5x=-3\)

\(\Leftrightarrow x=-\frac{3}{5}\)

Vậy pt có nghiệm là :\(x=-\frac{3}{5}\)

14 tháng 5 2016

a) <=> \(2x^2-8x+3x-12+x^2-7x+10=3x^2-5x-12x+20\)

<=> \(2x^2-8x+3x-12+x^2-7x+10-3x^2+5x+12x-20=0\)

<=> \(5x-22=0\)

<=> \(5x=22\)

<=> \(x=\frac{22}{5}\)

b) <=> \(24x^2-9x+16x-6-4x^2-7x-16x-28=10x^2+5x-2x-1\)

<=> \(24x^2-9x+16x-6-4x^2-7x-16x-28-10x^2-5x+2x+1=0\)

<=> \(10x^2-19x-33=0\)

<=> \(10x^2-30x+11x-33=0\)

<=> \(10x\left(x-3\right)+11\left(x-3\right)=0\)

<=> \(\left(x-3\right)\left(10x+11\right)=0\)

<=> \(x=3;x=-\frac{11}{10}\)