K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\) ( BĐT Bunhiacopxki )

Vậy \(-\sqrt{2}\le x+y\le\sqrt{2}\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

22 tháng 5 2023

bạn ơi có thể ghi lại rõ hơn được không nhỉ mình nhìn hơi rối á

22 tháng 5 2023

 Bạn nhấn chữ "Đọc tiếp" ở ngay dưới câu hỏi chưa? Nếu bạn chưa nhấn thì nhấn đi, nó tự xuống dòng đó.

27 tháng 6 2016

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

28 tháng 6 2016

bài 1 sai đề

28 tháng 6 2016

3. 

P=(x+y)(x^2-xy+y^2)+xy

P=x^2+y^2-xy+xy

P=x^2+y^2

14 tháng 1 2021

Do x,y∈Z và 3x+2y=1 ⇒xy<0

3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)

Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)

⇒x = 1 - 2t ; y = 3t - 1

khi đó : H = t\(^2\) -3t + |t| -1

nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2

Dấu "=" xảy ra ⇔t=1

nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2

vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)