K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Chọn D.

Cách 1. Xét hàm số y = f(x)  x 3 - 3 x 2 - 9 x + m  có 

Ta có bảng biến thiên sau

Giá trị lớn nhất của hàm số y = | x 3 - 3 x 2 - 9 x + m | trên đoạn  bằng 16 khi và chỉ khi 

Vậy m = 11 là giá trị duy nhất của  thỏa mãn

Cách 2: Xét hàm số y = f(x) =  x 3 - 3 x 2 - 9 x + m  

Ta có: 

Vậy 

Xét phương trình  không có giá trị nào của  thỏa mãn vì

m = 18 thì 

m = -14 thì 

Xét phương trình  không có giá trị nào của  thỏa mãn vì

m = 36 thì 

m = 4 thì 

Xét phương trình  có một  giá trị thỏa mãn

m = 43 thì 

m = 11 thì  (thỏa mãn)

Xét phương trình  có một  giá trị thỏa mãn

m = 11 thì  (thỏa mãn)

m = -21 thì 

Vậy có m = 11 thỏa mãn yêu cầu bài toán.

15 tháng 12 2019

+ Xét hàm số  f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .

Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận )  hoặc x= -1( loại)

+ Suy ra GTLN và GTNN của  f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.

+ Xét hàm số y = x 3 - 3 x + m   trên đoạn [0; 2 ] ta được giá trị lớn nhất của y  là

m a x m ; m - 2 ; m + 1 = 3 .

TH1: m= 3 thì max {1;3;5}= 5 ( loại )

TH2: 

+ Với m= -1. Ta có max {1; 3}= 3 (nhận).

+Với m= 5. Ta có max { 3;5;7}= 7 (loại).

TH3: 

+ Với m= 1. Ta có max {1; 3}= 3 (nhận).

+ Với m= -5. Ta có max {3;5;7}= 7 (loại).

Do đó m= -1 hoặc m= 1

Vậy tập hợp S  phần tử.

Chọn B.

17 tháng 6 2018

21 tháng 5 2017

12 tháng 12 2018

Đáp án B.

Xét f x = x 3 − 3 x + m  trên đoạn 0 ; 2  

Ta có: f ' x = 3 x 3 3 = 0 ⇒ x = 1

Lại có:

f 0 = m ; f 1 = m − 2 ; f 2 = m + 2

Do đó: f x ∈ m − 2 ; m + 2

Nếu

m − 2 ≥ 0 ⇒ Max 0 ; 2 f x = m + 2 = 3 ⇔ m = 1  (loại).

Nếu m − 2 < 0 ⇒ Max 0 ; 2 f x = m + 2 Max 0 ; 2 f x = 2 − m

Ÿ TH1: Max 0 ; 2 f x = m + 2 = 3 ⇔ m = 1 ⇒ 2 − m = 1 < 3 t / m

Ÿ TH2: Max 0 ; 2 f x = 2 − m = 3 ⇔ m = − 1 ⇒ m + 2 = 1 < 3 t / m

Vậy m = 1 ; m = − 1  là giá trị cần tìm.

11 tháng 6 2018

Đáp án B

30 tháng 8 2017

Đáp án B.

27 tháng 1 2018

3 tháng 4 2017

Chọn B

Xét hàm số g(x) =  x 3 - 3 x + m trên  ℝ

Bảng biến thiên của hàm số g(x):

Đồ thị của hàm số y = |g(x)| thu được bằng cách giữ nguyên phần đồ thị phía trên trục hoành của (C): y = g(x), còn phần đồ thị phía dưới trục hoành của (C): y = g(x) thì lấy đối xứng qua trục hoành lên trên. Do đó, ta có biện luận sau đây:

Ta xét các trường hợp sau:

Khi đó:  nên 

Như vậy 
(loại)

Khi đó: , nên

Như vậy (thỏa mãn)

(loại)

do đó
(thỏa mãn)

do đó

(thỏa mãn)

Suy ra S = {-1;1}. Vậy chọn  B

13 tháng 4 2019

Chọn D.

Cách 1. Xét hàm số y = f(x)  x 3 - 3 x 2 - 9 x + m  có 

Ta có bảng biến thiên sau

Giá trị lớn nhất của hàm số y = | x 3 - 3 x 2 - 9 x + m | trên đoạn  bằng 16 khi và chỉ khi 

Vậy m = 11 là giá trị duy nhất của  thỏa mãn

Cách 2: Xét hàm số y = f(x) =  x 3 - 3 x 2 - 9 x + m  

Ta có: 

Vậy 

Xét phương trình  không có giá trị nào của  thỏa mãn vì

m = 18 thì 

m = -14 thì 

Xét phương trình  không có giá trị nào của  thỏa mãn vì

m = 36 thì 

m = 4 thì 

Xét phương trình  có một  giá trị thỏa mãn

m = 43 thì 

m = 11 thì  (thỏa mãn)

Xét phương trình  có một  giá trị thỏa mãn

m = 11 thì  (thỏa mãn)

m = -21 thì 

Vậy có m = 11 thỏa mãn yêu cầu bài toán.