K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

Chọn B

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {OBC} \right);BC \subset \left( {OBC} \right) \Rightarrow OA \bot BC\)

Trong (OBC) kẻ \(OD \bot BC\)

\(\begin{array}{l} \Rightarrow BC \bot \left( {OAD} \right);BC \subset \left( {ABC} \right) \Rightarrow \left( {OAD} \right) \bot \left( {ABC} \right)\\\left( {OAD} \right) \cap \left( {ABC} \right) = AD\end{array}\)

Trong (OAD) kẻ \(OE \bot AD\)

\( \Rightarrow OE \bot \left( {ABC} \right) \Rightarrow d\left( {O,\left( {ABC} \right)} \right) = OE\)

Xét tam giác OBC vuông tại O có

\(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow OD = \frac{{2a\sqrt 3 }}{3}\)

Xét tam giác OAD vuông tại O có

\(\frac{1}{{O{E^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{D^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}}} = \frac{7}{{4{a^2}}} \Rightarrow OE = \frac{{2a\sqrt 7 }}{7}\)

Vậy \(d\left( {O,\left( {ABC} \right)} \right) = \frac{{2a\sqrt 7 }}{7}\)

3 tháng 4 2022

Cứu với 

 

NV
5 tháng 4 2022

Qua B kẻ đường thẳng song song OM cắt OC kéo dài tại D

\(\Rightarrow OM||\left(ABD\right)\Rightarrow d\left(OM;AB\right)=d\left(OM;\left(ABD\right)\right)=d\left(O;\left(ABD\right)\right)\)

Gọi E là trung điểm BD, từ O kẻ \(OH\perp AE\)

\(BD||OM\) và M là trung điểm BC\(\Rightarrow OM\) là đường trung bình tam giác BCD

\(\Rightarrow BD=2OM=BC\Rightarrow\Delta BCD\) vuông cân tại B

O là trung điểm CD (do OM là đường trung bình BCD),  E là trung điểm BD

\(\Rightarrow OE\) là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=\dfrac{a\sqrt{2}}{2}\\OE||BC\Rightarrow OE\perp BD\end{matrix}\right.\)

\(\left\{{}\begin{matrix}OA\perp OB\\OA\perp OC\end{matrix}\right.\) \(\Rightarrow OA\perp\left(OBC\right)\Rightarrow OA\perp BD\)

\(\Rightarrow BD\perp\left(OAE\right)\Rightarrow BD\perp OH\)

\(\Rightarrow OH\perp\left(ABD\right)\Rightarrow OH=d\left(O;\left(ABD\right)\right)\)

Áp dụng hệ thức lượng trong tam giác vuông OAE:

\(OH=\dfrac{OA.OE}{AE}=\dfrac{OA.OE}{\sqrt{OA^2+OE^2}}=\dfrac{a\sqrt{3}}{3}\)

10 tháng 3 2017

Đáp án D

Gọi H là hình chiếu của O xuống (ABC) 

Ta có:  1 O H 2 = 1 a 2 + 1 2 a 2 + 1 a 3 2 = 19 12 a 2 ⇒ O H = 2 a 3 19

18 tháng 6 2019

5 tháng 3 2019

Đáp án A

Gọi H là hình chiếu của O lên mặt phẳng (ABC) nên O H ⊥ A B C ⇒ O H ⊥ B C 1 .

Mặt khác O A ⊥ O B , O A ⊥ O C ⇒ O A ⊥ O B C ⇒ O A ⊥ B C 2 .

Từ (1),(2) suy ra B C ⊥ A O H ⇒ B C ⊥ A H . Chứng minh tương tự ta được A B ⊥ C H . Suy ra H là trực tâm của ΔABC.

Trong mặt phẳng (ABC) gọi E là giao điểm của AH và BC.

Ta có O H ⊥ A B C ⇒ O H ⊥ A E  tại H.

O A ⊥ A B C ⇒ O A ⊥ O E  tức là OH là đường cao của tam giác vuông OAE.

Mặt khác OE là đường cao của tam giác vuông OBC.

Do đó: 1 O H 2 = 1 O A 2 + 1 O E 2 = 1 O A 2 + 1 O B 2 + 1 O C 2 .

⇔ 1 d 2 = 1 a 2 + 1 b 2 + 1 c 2 ⇒ d = a b c b 2 c 2 + a 2 c 2 + a 2 b 2 .

2 tháng 5 2018

Đáp án D

Ta có:  V O . A B C = 1 6 O A . O B . O C = 6 ⇒ O C = 3

Lại có  1 d O ; A B C 2 = 1 O A 2 + 1 O B 2 + 1 O C 2 ⇒ d O ; A B C = 12 41

1 tháng 1 2020

24 tháng 3 2017

Chọn D