Gọi A,B là hai điểm cực trị của đồ thị hàm số y = x 3 - 3 x 2 + 2018 . Tìm độ dài của đoạn AB.
A. AB = 2 5 .
B. AB = 5.
C. AB = 5 2 .
D. AB = 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đồ thị hàm số đã cho có tiệm cận đứng là x= -2 và tiệm cận ngang là y= 1.
Giao điểm hai đường tiệm cận là I ( -2; 1) .
Ta có:
A ( a ; 1 - 3 a + 2 ) ∈ ( C ) , B ( b ; 1 - 3 b + 2 ) ∈ ( C ) . I A → = ( a + 2 ; - 3 a + 2 ) , I B → = ( b + 2 ; - 3 b + 2 ) .
Đặt a1== a+ 2 ; b1= b+ 2( a1≠ 0 ; b1≠0 ; a1 ≠ b1
Tam giác ABI đều khi và chỉ khi
Ta có (1)
+ Trường hợp a1= b1 loại
+ Trường hợp a1= - b1 ; a1b1 = -3 (loại vì không thỏa (2) .
+ Trường hợp a1 b1 =3 thay vào ( 2) ta được
3 + 9 3 a 1 2 + 9 a 1 2 = 1 2 ⇔ a 1 2 + 9 a 1 2 = 12 .
Vậy AB=IA= a 1 2 + 9 a 1 2 = 2 3 .
Chọn B.
Đáp án C.
Phương trình hoành độ giao điểm của hai đồ thị là x 2 - x = 5 + 3 : x ⇔ x - 3 x + 1 2 = 0 ⇔ x ∈ 3 ; - 1 ⇒ A 3 ; 6 , B - 1 ; 2 ⇒ B A → 4 ; 4 ⇒ A B = 4 2 .
Đáp án DPhương trình hoành độ gaio điểm của đồ thị (C) và đường thẳng
Gọi . Ta tính được khi m = 0
Đáp án là A