K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(2\left(x-3\right)^4-3^2=503\\ \Rightarrow2\left(x-3\right)^4=512\\ \Rightarrow\left(x-3\right)^4=256\\ \Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)

25 tháng 9 2023

`2(x-3)^4-3^2=503`

`=>2(x-3)^4-9=503`

`=>2(x-3)^4=503+9`

`=>2(x-3)^4=512`

`=>(x-3)^4=512:2`

`=>(x-3)^4=256`

`=>(x-3)^4=4^4` hoặc `(x-3)^4=(-4)^4`

`=>x-3=4` hoặc `x-3=-4`

`=>x=7` hoặc `x=-1`

Vậy `x in{-1;7}`

2 tháng 8 2017

x+√(x^2+3)=3/(y+√(y^3))=3(y-√(y^2+3)/-a(trục căn thức)

x+√(x^2+3)=-y+√(y^2+3) suy ra x+y=√(y^2+3)-√(x^2+3)(1)

Tương tự,x+y=√(x^2+3)-√(y^2+3)(2)

Cộng (1),(2) theo vế suy ra 2(x+y)=0 suy ra x+y=0

hay E=0.

Vậy E=0

2 tháng 8 2017

nhân \(-x+\sqrt{x^2+3}\)  vào 2 vế ta đc : \(\left(-x^2+x^2+3\right)\left(y+\sqrt{y^2+3}\right)=\)\(3\left(-x+\sqrt{x^2+3}\right)\)
                         <=>  \(y+\sqrt{y^2+3}=-x+\sqrt{x^2+3}\)<=> \(y+\sqrt{y^2+3}+x-\sqrt{x^2+3}=0\)__(1)___
làm tương tự ta đc \(\left(-y+\sqrt{y^2+3}\right)\left(x+\sqrt{x^2+3}\right)\)\(=3\left(-y+\sqrt{y^2+3}\right)\)
                          <=> \(x+\sqrt{x^2+3}=-y+\sqrt{y^2+3}\)<=> \(x+\sqrt{x^2+3}+y-\sqrt{y^2+3}=0\)__(2)__
       lấy (1) + (2) => 2(x+y) =0 => x+y=0        
   lấy 

10 tháng 7 2023

Nam has learnt English for two years

CT: S + started/began + to V/Ving + O

 -> S + has/have + P2 + O

13 tháng 12 2015

ab*ab=6ab

ab*ab=600+ab

ab*ab-ab=600

ab*(ab-1)=600

=>ab=25

13 tháng 12 2015

105 điểm hỏi đáp ! vậy là bay từ 86 bay lên hạng 4 ( cảm ơn các bạn đã ủng hộ xăng ( li-ke ) để đủ nhiên liệu bay ) :D

NV
25 tháng 7 2021

3.

Do \(sin\left(x+k2\pi\right)=sinx\Rightarrow sin\left(x+2020\pi\right)=sinx\)

\(sin\left(\dfrac{\pi}{2}+x\right)=cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}-x\right)=cos\left(-x\right)=cosx\)

\(A=\dfrac{sinx+sin3x+sin5x}{cosx+cos3x+cos5x}=\dfrac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}\)

\(=\dfrac{2sin3x.cosx+sin3x}{2cos3x.cosx+cos3x}=\dfrac{sin3x\left(2cosx+1\right)}{cos3x\left(2cosx+1\right)}\)

\(=\dfrac{sin3x}{cos3x}=tan3x\)

NV
25 tháng 7 2021

4.

a.

\(\overrightarrow{CB}=\left(2;-2\right)=2\left(1;-1\right)\)

Do đường thẳng d vuông góc BC nên nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình đường thẳng d đi qua \(A\left(-1;2\right)\) và có 1 vtpt là \(\left(1;-1\right)\) là:

\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)

b.

Gọi \(I\left(a;b\right)\) là tâm đường tròn, ta có \(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a+1;b-2\right)\\\overrightarrow{BI}=\left(a-3;b-2\right)\\\overrightarrow{CI}=\left(a-1;b-4\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a+1\right)^2+\left(b-2\right)^2\\BI^2=\left(a-3\right)^2+\left(b-2\right)^2\\CI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

Do I là tâm đường tròn qua 3 điểm nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-2\right)^2=\left(a-3\right)^2+\left(b-2\right)^2\\\left(a+1\right)^2+\left(b-2\right)^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a=8\\4a+4b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow I\left(1;2\right)\)

\(\overrightarrow{AI}=\left(2;0\right)\Rightarrow R=AI=\sqrt{2^2+0^2}=2\)

Pt đường tròn có dạng:

\(\left(x-1\right)^2+\left(y-2\right)^2=4\) 

3 tháng 8 2023

Các số được điền vào các ô theo thứ tự từ trái sang phải là:

-1; - \(\dfrac{1}{3}\);  \(\dfrac{2}{3}\)\(\dfrac{4}{3}\)