K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

tich minh cho minh len thu 8 tren bang sep hang cai

27 tháng 1 2016

tu giai di nha

30 tháng 1 2019

các CTV giúp em với

30 tháng 1 2019

a-b chia hết cho 2 =>a và b cùng chẵn hoặc lẻ

mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2 

vậy b-a chia hết cho 2

c-b chia hết cho 2 =>c và b cùng chẵn hoặc lẻ

mà a và b cùng chẵn hoặc lẻ =>c và a cùng chẵn hoặc lẻ

mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2

=>a-c chia hết cho 2

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^ 

22 tháng 1 2019

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

26 tháng 11 2021

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

12 tháng 5 2016

Ví 1 số :2 dư 0 hoặc 1 mà (a+b) ko chia hết cho 2 => (a+b) :2 dư 1=>1 trong 2 số phải chia hết cho2

21 tháng 2 2021

Ta có :

       a ⋮ b ; b ⋮ a

⇒a = b

Mà theo đề bài a ≠ b ⇒ Không có a và b

VD : 4 ⋮ 2 nhưng 2 khong chia hết cho 4

AH
Akai Haruma
Giáo viên
28 tháng 7

1.

$a\vdots b, b\vdots a$ và $a,b\neq 0$ nên $|a|\geq |b|, |b|\geq |a|$

$\Rightarrow |a|=|b|$

$\Rightarrow a=\pm b$ 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 7

2/

Áp dụng kết quả của bài 1, ta suy ra $n+5=n+1$ hoặc $n+5=-(n+1)$
Nếu $n+5=n+1$

$\Leftrightarrow 5=1$ (vô lý) 

Nếu $n+5=-(n+1)$

$\Rightarrow 2n+6=0$

$\Rightarrow 2n=-6$

$\Rightarrow n=-3$

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6