trong tam giác vuông có 2 góc nhọn quan hệ ntn vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biết góc tù>90 độ góc nhọn<90 độ
Nếu một tam giác có 2 góc tù thì tổng 2 góc trong tam giác đó lớn hơn 180 độ ko thõa mãn tổng 3 góc trong 1 tam giác
Nếu một tam giác có 2 góc vuông thì góc còn lại là 0 độ vô lí
do đó trong 1 tam giác chỉ có thể có 1 góc tù hoặc 1 góc vuông
Theo bạn thì câu trả lời sẽ là bao nhiêu? Cách giải thứ nhất là cộng kết quả hàng trên với số đầu hàng dưới lại, chúng ta sẽ có kết quả hàng dưới (1 + 4 = 5, 5 + 2 + 5 = 12,...), cứ thế, ta sẽ có con số cuối cùng là 40.
Tuy nhiên vẫn còn một cách giải khác, đó là nhân số thứ hai trong phép tính với số đầu rồi tiếp tục cộng thêm số đầu (4 x 1 + 1 = 5, 5 x 2 + 2 = 12...), nếu tính theo cách này thì đáp án cuối sẽ là 96.
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Các góc trong một tam giác được gọi là góc trong. Các góc kề bù với góc trong được gọi là góc ngoài. Góc ngoài thì bằng tổng các góc trong không kề bù với nó. Mỗi tam giác chỉ có 3 góc trong và 6 góc ngoài.
Nhận xét: Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó
a. Xét △OAM và △OBM có:
\(\hat{OAM}=\hat{OBM}=90^o\)
\(OM\) chung
\(\hat{AOM}=\hat{BOM}\) (do M thuộc tia phân giác của \(\hat{xOy}\))
\(\Rightarrow\Delta OAM=\Delta OBM\left(c.h-g.n\right)\)
\(\Rightarrow MA=MB\) (đpcm).
b. Từ a. \(\Rightarrow OA=OB\)
⇒ Tam giác OAB cân tại O.
c. Xét △BME và △AMD có:
\(\hat{MBE}=\hat{MAD}=90^o\)
\(MA=MB\left(cmt\right)\)
\(\hat{AMD}=\hat{BME}\) (đối đỉnh)
\(\Rightarrow\Delta BME=\Delta AMD\left(g.n-c.g.v\right)\)
\(\Rightarrow MD=ME\left(đpcm\right)\)
d. Ta có: \(OA=OB\left(cmt\right)\), \(AD=DE\) (suy ra từ c.)
\(\Rightarrow OA+AD=OB+DE\)
\(\Rightarrow OD=OE\)
⇒ Tam giác ODE cân tại O.
Tam giác ODE cân tại O có OM là đường phân giác ⇒ OM cũng là đường cao.
\(\Rightarrow OM\perp DE\left(đpcm\right)\)
Error code 404 : toán đấy