K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

22 tháng 4 2017

Đáp án A

29 tháng 12 2021

Câu 1: C

26 tháng 1 2019

Chọn B.

Xét :

Có nghiệm bội chẵn  x   =   - 1 ,   x   =   1 nên dấu của f’(x) qua hai nghiệm này không đổi dấu =>  x = 1 và  x   =   - 1 không là cực trị

Có nghiệm bội lẻ x   =   2 ,   x   = - 3 2 , nên nó là hai cực trị

Kết luận: Hàm số có hai cực trị.

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số

4 tháng 12 2015

y=f(x)=5x2 -4

a) f(x) =5x2 -4 = 5(-x)2 -4 = f (-x)  ; vì (-x)2 =x 2

b)  x1<x2<0 => x1+x2<0 và x1 - x2 <0

 f(x1) - f(x2) = (5x12- 4 )- (5x22 -4) = 5(x1-x2)(x1+x2)  >0 ( theo trên)

=>  f(x1) > f(x2

26 tháng 2 2021

câu này là tìm cực đại mà??? Nếu vậy chỉ cần vẽ bảng biến thiên rồi đếm số điểm cực đại đúng ko???

NV
26 tháng 2 2021

Bài này khá dễ, chỉ cần tìm số nghiệm bội lẻ và dương của \(f'\left(x\right)=0\), gọi nó là k thì số cực trị của \(f\left(\left|x\right|\right)=2k+1\) (do đồ thị đối xứng qua Oy đồng thời luôn nhận \(x=0\) là 1 cực trị)

\(f'\left(x\right)=0\) có các nghiệm bội lẻ dương là 2; 3; 7; 25 tổng cộng 4 nghiệm

Do đó \(f\left(\left|x\right|\right)\) có 9 cực trị

22 tháng 4 2016

ai làm có thưởng 2điem