Giả sử F x là nguyên hàm của hàm số f x = 4 x - 1 . Đồ thị hàm số F x và f x cắt nhau tại một điểm trên trục tung. Tọa độ các điểm chung của hai đồ thị hàm số trên là:
A. 0 ; - 1
B. 5 2 ; 8
C. 0 ; - 1 và 5 2 ; 9
D. 5 2 ; 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f ( x ) = 4 x - 1 ⇒ F ( x ) = ∫ f ( x ) d x = 2 x 2 - x + C
Phương trình hoành độ giao điểm của đồ thị hàm số F(x) và f(x) là:
2 x 2 - x + C = 4 x - 1 ⇔ 2 x 2 - 5 x + C + 1 = 0 ( * )
Do hai đồ thị hàm số trên cắt nhau tại một điểm trên trục tung nên x=0 là nghiệm của (*)
⇔ C + 1 = 0 ⇔ C = - 1
Với C=-1: Phương trình(*)
⇔ 2 x 2 - 5 x = 0 ⇔ [ x = 0 x = 5 2
Tọa độ các điểm chung của hai đồ thị hàm số trên là: (0;-1) và 5 2 ; 9
Chọn đáp án C.
Phương pháp:
+) Sử dụng các công thức nguyên hàm cơ bản
xác định hàm số F(x).
+) Giải phương trình hoành độ giao điểm.
Cách giải:
Phương trình hoành độ giao điểm của
đồ thị hàm số F(x) và f(x) là :
Do hai đồ thị hàm số trên cắt nhau tại một
điểm trên trục tung nên x=0 là nghiệm của (*)
Tọa độ các điểm chung của hai đồ thị
hàm số trên là:
Chọn A.
Ta có F(x)=- 2 5 cos 5 x + 2 3 x x + 3 5 x + C
và F(0) = f(0) ⇔ C = 1
Vậy F(x)= - 2 5 cos 5 x + 2 3 x x + 3 5 x + 1
Đáp án C