K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

2n+1 chia het cho n-3

=>2.(n-3)+7 chia het cho n-3

=>7 chia het cho n-3

=> n-3 E Ư(7)={-7;-1;1;7}

=> n E {-4;2;4;10}

27 tháng 1 2016

Ta có:

\(\frac{2n+1}{n-3}=\frac{2n-6+7}{n-3}=\frac{2\left(n-3\right)+7}{n-3}=\frac{n-3+7}{n-3}=\frac{n-3}{n-3}+\frac{7}{n-3}=1+\frac{7}{n-3}\)

Suy ra n-3 thuộc Ư(7)

Vậy Ư(7)là:[1,-1,7,-7]

Ta có bảng sau:

n-31-17-7
n4210-4

vậy n=4;2;10;-4

ủng hộ mình 3 **** tròn 700 nha

20 tháng 2 2018

cái này mà là toán lớp 1 sỉu

20 tháng 2 2018

mk nhấn nhầm bn ak :)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 1:

$A=(n-1)(2n-3)-2n(n-3)-4n$

$=2n^2-5n+3-(2n^2-6n)-4n$

$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$

$=(2n-3)(n+2+n)+n(n+10)$

$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$

$=5n^2+8n-6=5n(n+3)-7(n+3)+15$

$=(n+3)(5n-7)+15$

Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$

$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$

$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$

13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}

11 tháng 12 2017

a) Nếu n + 4 chia hết cho n - 2 => n phải chia hết cho 4 hoặc -4

Xin lỗi, phần b mình chưa giải dc.

11 tháng 12 2017

n+4=(n-2)+6 chia hết cho n-2 (vì n+4 chia hết cho n-2)

Mà n-2 chia hết cho n-2

=> 6 chia hết cho n-2

n-2 thuộc ước nguyên của 6

Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n-2={-1;1;-2;2;-3;3;-6;6}

=>n={1;3;0;4;-1;5;-4;8}

Vậy n thuộc {1;3;0;4;-1;5;-4;8} thì n+4 chia hết cho n-2

b)2n+3=(n-1)+(n+4) chia hết cho n-1 ( vì 2n+3 chia hết cho n-1)

Mà n-1 chia hết cho n-1

=> 4 chia hết cho n-1

=> n-1 thuộc ước nguyên của 4

Ư(4)={1;2;4;-1;-2;-4}

=>n-1={1;2;4;-1;-2;-4}

=>n={2;3;5;0;-1;-3}

Vậy n thuộc {2;3;5;0;-1;-3} thì 2n + 3 chia hết cho n - 1

15 tháng 12 2016

làm câu

\(2n-1⋮3n+2\)

\(\Rightarrow3.\left(2n-1\right)⋮3n+2\)

\(\Rightarrow2.\left(3n+2\right)-7⋮3n+2\)

\(\Rightarrow7⋮3n+2\)

\(\Rightarrow3n+2\inƯ\left(7\right)=\left\{-1,1,-7,7\right\}\)

\(\Rightarrow n\in\left\{-1,-\dfrac{1}{3},-3,\dfrac{5}{3}\right\}\)

Mà \(n\in Z\Rightarrow n\in\left\{-1,-3\right\}\)

16 tháng 2 2021

\(2n-1⋮3n+2\)

\(\Leftrightarrow\left(2n-1\right)-\left(3n+2\right)⋮3n+2\)

\(\Leftrightarrow n+3⋮3n+2\)

\(\Leftrightarrow\left(3n+9\right)-\left(3n+2\right)⋮3n+2\)

\(\Leftrightarrow7⋮3n+2\)

3n+2 là ước của 7 \(\Rightarrow3n+2\in\left\{1;7;-1;-7\right\}\)

\(\Rightarrow n\in\left\{-\dfrac{1}{3};\dfrac{5}{3};-1;-3\right\}\)

n thuộc Z \(\Rightarrow n\in\left\{-1;-3\right\}\)