K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Dùng phương pháp tọa độ hóa.

Đặt hệ trục tọa độ, ở đây như thầy đã trình bày ta nên chọn gốc tại P trục Ox, Oy là PA và PC.

Gọi α góc tạo bởi hai mặt phẳng ( AB'C' ) và (MNP)

Khi đó cos α = n 1 → . n 2 → n 1 → . n 2 → = 13 65

Đáp án cần chọn là B

15 tháng 7 2017

Đáp án B

Gọi L là điểm thỏa mãn A P ¯ = 3 P L ¯ và Q là trung điểm B ' C ' thì cosin cần tìm là

8 tháng 11 2019

Đáp án B.

Xét hình chữ nhật 

27 tháng 1 2019

Đáp án B

17 tháng 8 2017

NV
20 tháng 4 2023

Gọi D, E, F lần lượt là trung điểm A'A, BC và MN

\(\left\{{}\begin{matrix}MN||B'C'\\DN||AB'\end{matrix}\right.\) (đường trung bình tam giác) \(\Rightarrow\left(AB'C'\right)||\left(DNM\right)\)

\(\Rightarrow\) Góc giữa (AB'C') bằng góc giữa (DNM) và (BCMN)

\(MN\perp A'F\) (A'MN là tam giác đều), và \(A'A\perp\left(A'B'C'\right)\Rightarrow A'A\perp MN\)

\(\Rightarrow MN\perp\left(A'AEF\right)\) \(\Rightarrow\)  góc giữa (DNM) và (BCMN) là \(\widehat{DFE}\) nếu nó là góc nhọn và \(180^0-\widehat{DFE}\) nếu nó là góc tù

\(MN=\dfrac{1}{2}B'C'=\sqrt{3}\Rightarrow A'F=\dfrac{MN\sqrt{3}}{2}=\dfrac{3}{2}\) (trung tuyến tam giác đều)

\(\Rightarrow DF=\sqrt{A'F^2+A'D^2}=\dfrac{\sqrt{13}}{2}\)

\(AE=\dfrac{AB\sqrt{3}}{2}=3\Rightarrow DE=\sqrt{AD^2+AE^2}=\sqrt{10}\)

Gọi G là trung điểm AE \(\Rightarrow FG\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}FG=A'A=2\\GE=\dfrac{1}{2}AE=\dfrac{3}{2}\end{matrix}\right.\)

\(EF=\sqrt{FG^2+EG^2}=\dfrac{5}{2}\)

Áp dụng định lý hàm cos:

\(cos\widehat{DFE}=\dfrac{DF^2+EF^2-DE^2}{2DF.EF}=...\Rightarrow\widehat{DFE}=...\)

NV
20 tháng 4 2023

loading...

25 tháng 1 2019

3 tháng 12 2019

6 tháng 6 2017

Đáp án đúng : D

17 tháng 7 2018

Đáp án D

Gọi P là trung điểm cạnh BC

Tam giác MPN vuông tại P có