K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

Chọn C.

Phương pháp : Dựng thiết diện.

Cách giải : Gọi I, J lần lượt là giao điểm của GF với AB và AD.

Gọi H là giao điểm của IE và SB.

Gọi K là giao điểm của SD và EJ.

Suy ra thiết diện cần tìm là ngũ giác EHFGK.

20 tháng 10 2019

Chọn đáp án C

Trong mp (ABCD), gọi

Do đó ngũ giác EHFGJ là thiết diện của hình chóp cắt bởi (EFG)

3 tháng 11 2019

16 tháng 5 2019

Đáp án C

Kẻ EG cắt SB tại I, nối FI cắt BC tại M.

Kẻ GM cắt CD tại H, nối FH cắt SD tại N

Vậy thiết diện cần tìm là ngũ giác GMFNE (hình vẽ bên)

26 tháng 11 2018

NV
7 tháng 1

Qua F kẻ đường thẳng song song AD cắt AB tại H

\(\Rightarrow\left(FGH\right)||\left(SBC\right)\Rightarrow GH||\left(SBC\right)\Rightarrow GH||BC\)

Đặt \(\widehat{BAE}=a\) ; \(\widehat{DAF}=b\) (để đỡ dài)

Ta có: \(a+b=90^0-\widehat{EAF}=45^0\)

\(\Rightarrow tan\left(a+b\right)=tan45^0\)

\(\Rightarrow\dfrac{tana+tanb}{1-tana.tanb}=1\)

\(\Rightarrow tana+tanb=1-tana.tanb\)

\(\Rightarrow tanb=\dfrac{1-tana}{1+tana}\)

Mà \(tana=tan\widehat{BAE}=\dfrac{BE}{AB}=\dfrac{1}{2}\)

\(\Rightarrow tanb=tan\widehat{DAF}=\dfrac{DF}{AD}=\dfrac{AH}{AB}=\dfrac{1-\dfrac{1}{2}}{1+\dfrac{1}{2}}=\dfrac{1}{3}\)

\(\Rightarrow3AH=AB=AH+BH\Rightarrow2AH=BH\Rightarrow\dfrac{AH}{BH}=\dfrac{1}{2}\)

Talet: \(\dfrac{GA}{GS}=\dfrac{AH}{BH}=\dfrac{1}{2}\)

NV
7 tháng 1

loading...

23 tháng 8 2019

Đáp án A

Dễ thấy SAEC = 1 2 SABC =   1 4 SABCD

=> SAECF =  1 2  SABCD

VS.AECF 1 2 VS.ABC

22 tháng 12 2020

Đề bài sai òi :v Vẽ hình ra đi bạn.

Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)