Tìm x:
| x - 2| = 0
GIẢI TỪNG BƯỚC CHO MK VỚI NHA!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8.x = 7,8.x + 25
8.x - 7,8.x = 25
x. ( 8 - 7,8 ) = 25
x . 0,2 = 25
x = 25 : 0,2
x = 125
Pt\(\Rightarrow\)\(\left[{}\begin{matrix}cosx+1=0\\3sinx-4=0\end{matrix}\right.\)\(\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow\)cosx=-1
sinx=\(\dfrac{4}{3}\)loại do sinx\(\notin\)\([-1;1]\)
Khi đó x=\(\Pi+k2\Pi\)(k\(\in\)Z)
a, Ta có: \(\left|x+4\right|\ge0\)
=> B = |x + 4| + 1996 \(\ge\)1996
Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4
Vậy GTNN của B là 1996 tại x = -4
b, Để C có giá trị nhỏ nhất
=> x - 2 phải lớn nhất
=> x - 2 = 5 => x = 7
=> GTNN của C = \(\frac{5}{x-2}=\frac{5}{7-2}=\frac{5}{5}=1\)
Vậy GTNN của C = 1 tại x = 7
c, Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
Để D có giá trị nhỏ nhất
=> \(\frac{9}{x-4}\)là số nhỏ nhất
=> x - 4 phải lớn nhất
=> x - 4 = 9 => x = 13
=> GTNN của D = \(\frac{x+5}{x-4}=\frac{13+5}{13-4}=\frac{18}{9}=2\)
Vậy GTNN của D = 2 tại x = 13
2x(x - 1/7) = 0 => trường hợp 1 : 2x = 0 => x=0 => trường hợp 2 : x - 1/7 = 0 => x=1/7 Vậy x thuộc {0;1/7} thì thỏa mãn đề bài
Ta có:-(3-0,2.x)-80%=7,5
-3+0,2x-0,8=7,5
0,2x=7,5+3+0,8
X=11,3:0,2
X=56,5
Vậy x=56,5
Ta có:-(3-0,2.x)-80%=7,5
-3+0,2x-0,8=7,5
0,2x=7,5+3+0,8
X=11,3:0,2
X=56,5
Vậy x=56,5
a.
\(A=B\)
\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{-16}{x^2-4}\);ĐK:\(x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-16\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4+16=0\)
\(\Leftrightarrow8x+16=0\)
\(\Leftrightarrow8\left(x+2\right)=0\)
\(\Leftrightarrow x=-2\left(ktm\right)\)
Vậy không có giá trị x thỏa mãn A=B
b.
\(A:B=\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{-16}{\left(x-2\right)\left(x+2\right)}< 0\)
\(\Leftrightarrow\dfrac{x^2+4x+4-x^2+4x-4}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{16}>0\)
\(\Leftrightarrow\dfrac{x}{2}>0\)
\(\Leftrightarrow x>0\)
Vì \(\left|x^2+2x\right|\ge0;\left|y^2-9\right|\ge0\)
Dấu ''='' xảy ra <=> \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)
\(y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow y=\pm3\)
Ta có :
∣∣x2+2x∣∣+∣∣y2−9∣∣=0|x2+2x|+|y2-9|=0
Do {|x2+2x|≥0|y2−9|≥0{|x2+2x|≥0|y2−9|≥0
→∣∣x2+2x∣∣+∣∣y2−9∣∣≥0→|x2+2x|+|y2-9|≥0
Mà ∣∣x2+2x∣∣+∣∣y2−9∣∣=0|x2+2x|+|y2-9|=0
→→ {|x2+2x|=0|y2−9|=0{|x2+2x|=0|y2−9|=0
→→ {x2+2x=0y2−9=0{x2+2x=0y2−9=0
→→ {x(x+2)=0y2=9{x(x+2)=0y2=9
→→ ⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩[x=0x+2=0[y=3y=−3{[x=0x+2=0[y=3y=−3
→→ ⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩[x=0x=−2[y=3y=−3{[x=0x=−2[y=3y=−3
Vậy x,y∈{0;3};{0;−3};{−2;3};{−2;−3}x,y∈{0;3};{0;-3};{-2;3};{-2;-3}
/x-2/ =0
=> x-2=0
=> x=0+2
=> x=2
như tìm x thường thôi mà