Cho hàm số y=f(x) có bảng biến thiên sau:
Hỏi đồ thị hàm số y = 1 f ( x ) - 3 có bao nhiêu tiệm cận ngang?
A. 0
B. 1
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bảng biến thiên ta thấy phương trình có 3 nghiệm phân biệt. Do đó phương trình có 3 nghiệm phân biệt.
Suy ra đồ thị hàm số có 3 tiệm cận đứng.
Đáp án D
TCN:
là tiệm cận ngang duy nhất;
TCĐ: Hàm số xác định ⇔ f ( x ) - 1 # 0 ⇔ f ( x ) # 1
(vì đồ thị f(x) cắt đường thẳng y = 1 tại ba điểm có hoành độ lần lượt x=a<-2;x=0;x=b>2).
Có
⇒ x = a ; x = 0 ; x = b là tiệm cận đứng.
Vậy đồ thị hàm số y = 1 f ( x ) - 1 có tổng 4 đường tiệm cận đứng và ngang.
Chọn đáp án B.
Hàm số xác định vì đường thẳng y=0 cắt đồ thị f(x) tại hai điểm có hoành độ x=a<-2; x=2
Ta có
⇒ y = 0 là tiệm cận ngang duy nhất.
Và
⇒ x = a ; x = 2 là các đường tiệm cận đứng.
Vậy đồ thị hàm số có tổng 3 đường tiệm cận ngang và đứng.
Chọn đáp án B.
Từ bảng biến thiên, ta có:
đồ thị hàm số không có tiệm cận ngang;
là TCĐ;
Vậy đồ thị hàm số đã cho có đúng hai đường tiệm cận. Chọn B.