K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

Tìm tất cả các giá trị nguyên của m để hàm số y=x^8+(m-2)x^5-(m^2-4)x^4+1 đạt cực tiểu tại x=0.

m= 2 

nha bạn 

bạn muốn tl rõ hơn thì bạn tìm trên google

10 tháng 8 2021

m=t747hGÁY