Tìm giới hạn của các hàm số sau lim x → 2 - x - 15 x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)
2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0
3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)
\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)
4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)
a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} > - 1\) và \({x_n} \to - 1\). Khi đó \(f\left( {{x_n}} \right) = x_n^2 + 2\)
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 + 2} \right) = \lim x_n^2 + \lim 2 = {\left( { - 1} \right)^2} + 2 = 3\)
Vậy \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = 3\).
Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} < - 1\) và \({x_n} \to - 1\). Khi đó \(f\left( {{x_n}} \right) = 1 - 2{x_n}\).
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {1 - 2{x_n}} \right) = \lim 1 - \lim \left( {2{x_n}} \right) = \lim 1 - 2\lim {x_n} = 1 - 2.\left( { - 1} \right) = 3\)
Vậy \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = 3\).
b) Vì \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right) = 3\) nên \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = 3\).
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} x = 1\).
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - {x^2}} \right) = - {1^2} = - 1\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).
I.
Do \(\left(u_n\right)\) là cấp số nhân \(\Rightarrow\)\(u_4=u_3.q\Rightarrow q=\dfrac{u_4}{u_3}=\dfrac{10}{3}\)
\(u_3=u_1q^2\Rightarrow u_1=\dfrac{u_3}{q^2}=\dfrac{27}{100}\)
2. Công thức số hạng tổng quát: \(u_n=\dfrac{27}{100}.\left(\dfrac{10}{3}\right)^{n-1}\)
II.
1. \(\lim\limits\dfrac{-3n^2+2n-2022}{3n^2-2022}=\lim\dfrac{-3+\dfrac{2}{n}-\dfrac{2022}{n^2}}{3-\dfrac{2022}{n^2}}=\dfrac{-3+0-0}{3-0}=-1\)
2.
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-5x+6}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x-3\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x-3\right)=-1\)
Thấy : \(\sqrt{x^2+x+3}-x^2+1=\sqrt{x^2+x+3}-\left(x^2-1\right)=\dfrac{x^2+x+3-\left(x^2-1\right)^2}{\sqrt{x^2+x+3}+x^2-1}\)
\(=\dfrac{x^2+x+3-x^4+2x^2-1}{...}=\dfrac{-x^4+3x^2+x+2}{...}\)
\(=\dfrac{-\left(x-2\right)\left(x^3+2x^2+x+1\right)}{...}\)
\(\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(x^3+2x^2+x+1\right)}{\left(x+2\right)\left[\sqrt{x^2+x+3}+x^2-1\right]}\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\dfrac{-\left(2^3+2.2^2+2+1\right)}{4.\left[\sqrt{2^2+2+3}+2^2-1\right]}=-\dfrac{19}{24}\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{2x+1}{2\sqrt{x^2+x+3}}-2x}{2x}=\dfrac{\dfrac{2.2+1}{2\sqrt{4+2+3}}-4}{4}=-\dfrac{19}{24}\)
Lời giải:
1.
\(\lim\limits_{x\to -1}\frac{x^{2019}+1}{x^2+x}=\lim\limits_{x\to -1}\frac{(x+1)(x^{2018}-x^{2017}+x^{2016}-....-x+1)}{x(x+1)}=\lim\limits_{x\to -1}\frac{x^{2018}-x^{2017}+x^{2016}-....-x+1}{x}\)
\(=\frac{(-1)^{2018}-(-1)^{2017}+(-1)^{2016}+....-(-1)+1}{-1}\)
\(=\frac{\underbrace{1+1+....+1+1}_{2019}}{-1}=\frac{2019}{-1}=-2019\)
2.
\(\lim\limits_{x\to 1}\frac{(x-1)+(x^2-1)+(x^3-1)+....+(x^n-1)}{x-1}\\ =\lim\limits_{x\to 1}\frac{(x-1)+(x-1)(x+1)+(x-1)(x^2+x+1)+....+(x-1)(x^{n-1}+x^{n-2}+...+x+1)}{x-1}\)
$\lim\limits_{x\to 1}[1+(x+1)+(x^2+x+1)+....+(x^{n-1}+x^{n-2}+...+x+1)]$
$=1+2+3+....+n=n(n+1):2$
\(\)
lim x → 2 - x - 15 x + 2 = + ∞