1) Tính hợp lý :
P=1-2-3+4+5-6-7+8+.........+2021-2022-2023+2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$
A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0
Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)
=0+0+...+0+(-1-2023)
=-2024
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
\(A=7^{2024}-7^{2023}+7^{2022}-7^{2021}+...+7^2-7\)
=>\(7A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2\)
=>\(7A+A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2+7^{2024}-7^{2023}+...+7^2-7\)
=>\(8A=7^{2025}-7\)
=>\(A=\dfrac{7^{2025}-7}{8}\)
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997