Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu của hai đáy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ hình thang ABCD nối B với D
Áp dụng bất đăng thức tam giác được:
BD + AB > AD (1)
BD + CD > BC (2)
Lấy (2) trừ (1) ta được:
BD + CD - BD - AB > BC - AD
\(\Leftrightarrow\) CD - AB > BC - AD
kẻ hình thang ABCD
kẻ 2 đường cao AH và BK nối B với H
xét tam giác ABH và tam giác KBH
có ^ABH = ^KBH ( 2gocs so le trong )
HB chung
=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )
=> AB =HK ( 2 cạnh tương ứng )
xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)
xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)
từ (1) và (2) => BC+AD >KC+HD
ta lại có DH+DK +HK =DC
mà AB=HK (C/m )
=> DH+DK+AB =dc
ta có DC-AB = DH+DK+AB-AB= DH+DK
mà DH+DK<BC+AD(c/m)
=>DC -AB< BC+AD
vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy
A B C D E
Giả sử hình thang ABCD có AB // CD
Từ B kẻ đường thẳng song song với AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = ED và AD = BE
Ta có: CD – AB = CD – ED = EC (1)
Trong ΔBEC ta có:
BE + BC > EC (bất đẳng thức tam giác)
Mà BE = AD
Suy ra: AD + BC > EC (2)
Từ (1) và (2) suy ra: AD + BC > CD – AB
A B C E D
a, Trong hình thang ABCD (AB // CD), kẻ BE // AD
Ta có: BE = AD, AB = DE (hình thang có 2 cạnh bên song song)
Xét t/g BEC có: BE + BC > EC (BĐT tam giác)
=> AD + BC > CD - DE hay AD + BC > CD - AB (đpcm)
b, Xét t/g BEC có: EC < |BC - BE|
=> CD - AB < |BC - AD| (đpcm)
A B F C D
c,Kẻ BF // AC
=> AB = CF ; AC = BF (hình thang có 2 cạnh bên song song)
Xét t/g BDF có: BD + BF > DF (BĐT tam giác)
=> BD + AC > DF
=> BD + AC > DC + CF
=> BD + AC > DC + AB (đpcm)
Vẽ hình thang ABCD nối B với D ( AB//CD)
Áp dụng BĐT tam giác ta có:
BD+AB>AD
BD+CD>BC
Trừ vế với vế ta được:
BD+CD-BD-AB>BC-AD
=> CD-AB>BC-AD (đđpcm)
Bn ơi, câu hỏi của mk là cm tổng hai cạnh bên > hiệu hai đáy mà bn. câu tl của bn là hiệu 2 cạnh đáy > hiệu 2 cạnh bên mà
Hình thang ABCD (AB//CD, AB < CD)
Từ hai đỉnh A và B của đáy bé, hạ đường vuông góc AF và BE
Ta được hình vuông ABEF (tự chứng minh)
Ta có: AB // CD
⇒BADˆ+ADCˆ=1800⇒BAD^+ADC^=1800 (Hai góc trong cùng phía) (*)
Lại có: BADˆ=BAFˆ+FADˆBAD^=BAF^+FAD^
⇔BADˆ=900+FADˆ⇔BAD^=900+FAD^
⇔BADˆ>900⇔BAD^>900
Từ (*) ⇒BADˆ>ADCˆ⇒BAD^>ADC^ (1)
Chứng minh tương tự, ta được:
⇒ABCˆ>BCDˆ⇒ABC^>BCD^ (2)
Cộng (1) với (2) theo vế, ta được:
⇒BADˆ+ABCˆ>ADCˆ+BCDˆ
Giả sử hình thang ABCD có AB // CD
Từ B kẻ đường thẳng song song với AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = ED và AD = BE
Ta có: CD – AB = CD – ED = EC (1)
Trong ∆ BEC ta có:
BE + BC > EC (bất đẳng thức tam giác)
Mà BE = AD
Suy ra: AD + BC > EC (2)
Từ (1) và (2) suy ra: AD + BC > CD – AB