Bên trong hình chữ nhật có kích thước 5×12 cho n điểm bất kì.
a) Với n=11,chứng minh trong số các điểm đã cho luôn tồn tại hai điểm mà khoảng cách giũa hai điểm đó không lớn hơn âm căn 13
b) Kết luận trên còn đúng khi n=10 không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta chia hình chữ nhật thành 10 hình có kích thước 2x3. Theo nguyên tắc Đrichle 11 điểm bổ vào 10 hình luôn tôn tại 1 hình có hai điểm có khoảng cách không lớn hơn \(\sqrt{2^2+3^2}=\sqrt{13}\)
b) Với n = 10 . thì ta chia thành 9 hình theo nguyên tắc Đrichle luôn tôn tai một hình có hai điểm có khoảng cách không lớn hơn \(\sqrt{13}\)nên n = 10 vẫn đúng
chia hình chữ nhật 3x4 thành 5 phần gồm 3 hình ngồi nhà , zà 2 hình nửa ngồi nhà ( ko biết zẽ hình )
. KHi đó 6 điểm chắc chắn nằm trong 5 hình này , mà 6=5.1+1 , nên sẽ có 2 điểm trong 1 hính ( theo nguyên lý Dirichlet) , giả sử 2 điểm đó là A,B . Dễ CM được AB\(\le5\)( dùng pi-to-go nha man) . dpcm
Thiên cốt cưng,
Năm t học lớp 7 chưa từng làm qua bài nào xàm vậy.
=_=
Làm ny a nhé!
:))
Áp dụng định lí Pitago trong tam giác ABC
=> \(BC=5\sqrt{2}>7\)
Xét tam giác MBC có: MB + MC > BC >7
Xét tam giác NBC có: NB + NC > BC > 7
=> ( MB + NB ) + ( MC + NC ) > 14
+) Nếu MB + NB < 7 => MC + NC > 7
+) Nếu MC + NC < 7 => MB + NB > 7
=> Tồn tại một trong hai tổng MB + NB ; MC + NC sẽ lớn hơn 7
Vậy ...