K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2019

Chọn B

20 tháng 9 2019

Đáp án C

Phương pháp:

+)  đồng biến trên (a;b)

+)  nghịch biến trên (a;b)

Cách giải:

Quan sát đồ thị của hàm số y = f’(x), ta thấy:

+)  đồng biến trên (a;b) => f(a) > f(b)

+)  nghịch biến trên (b;c) => f(b)<f(c)

Như vậy, f(a)>f(b), f(c)>f(b)

Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn

23 tháng 3 2019

Đáp án A

Dựa vào đồ thị của hàm số y = f '(x), em suy ra được bảng biến thiên như sau:

26 tháng 7 2019

Chọn A

Đồ thị của hàm số liên tục trên các đoạn , lại có là một nguyên hàm của .

Do đó diện tích của hình phẳng giới hạn bởi các đường:

là: 

.

Tương tự: diện tích của hình phẳng

giới hạn bởi các đường: là: 

.

Mặt khác, dựa vào hình vẽ ta có: .

Từ (1), (2) và (3) ta chọn đáp án A. 

 

( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )

6 tháng 6 2019

Đáp án B.

Phương pháp :  Ứng dụng tích phân để tính diện tích hình phẳng.

Cách giải:

6 tháng 11 2018

Đáp án B.

12 tháng 8 2017

3 tháng 4 2018

Đáp án là A

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

6 tháng 12 2017

20 tháng 12 2022

a: Để (d)//Ox thì m-1=0

=>m=1

b: Thay x=-1 và y=1 vào (d), ta được:

-m+1+m=1

=>1=1(luôn đúng)

c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:

\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)

=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)

=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)

=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)

=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)