K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn ấn vào đúng 0 sẽ ra đáp án, mình giải bài này rồi

26 tháng 1 2016

đừng bấm vào chữ đúng 

16 tháng 2 2019

Lí luận chung cho cả 4 câu :

Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau 

a) Dễ thấy \(x-2>x-7\)

\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)

b) tương tự

c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)

\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)

Tự giải nốt nha bạn mình bận rồi 

26 tháng 1 2016

bây giờ ít người giải bài lớp 8 , 9 lắm bạn ơi

26 tháng 1 2016

Nếu khó quá thì nên hoc24.vn nhé 

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

6 tháng 8 2023

1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.

 

Câu 1: D

Câu 3: 53/144>9/170>9/230

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

1) 

(=)x2 = 82 + 62 = 64+36=100=102 = (-10)2 

=> x=10 hoặc x=-10

2)

(=)|x-1| = -26/-24=13/12

=> x-1 = 13/12 hoặc x-1=-13/12

=> x= 25/12 hoặc x= -1/12

3) 

(2x-4+7)\(⋮\left(x-2\right)\) 

(=) 2(x-2) + 7 \(⋮\left(x-2\right)\)

(=) 7 \(⋮\left(x-2\right)\)

(=) x-2 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

(=) x\(\in\left\{-5;1;3;9\right\}\)

vì x bé nhất => x=-5

#Học-tốt