K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

8 tháng 7 2023

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)

29 tháng 10 2023

Bài 1:

a: \(x\left(x+y\right)+5y-x^2\)

\(=x^2+xy+5y-x^2\)

=xy+5y

b: \(\left(x-2\right)\left(y+1\right)-xy+4\)

\(=xy+x-2y-2-xy+4\)

=-2y+x+2

c: \(\dfrac{\left(4x^2y+12xy^2-8xy\right)}{2xy}\)

\(=\dfrac{2xy\cdot2x+2xy\cdot6y-2xy\cdot4}{2xy}\)

=2x+6y-4

d: \(\left(x-4\right)^2+8x-7\)

\(=x^2-8x+16+8x-7\)

\(=x^2+9\)

 

28 tháng 12 2021

a,\(\dfrac{3-x}{x-5}+\dfrac{2x-8}{x-5}=\dfrac{3-x+2x-8}{x-5}=\dfrac{x-5}{x-5}=1\)

b, \(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}+\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y+x-y+2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{4x}{\left(x-y\right)\left(x+y\right)}\)

Làm giúp mình câu 22 với 
    undefined

15 tháng 2 2021

ĐKXĐ: \(\left\{{}\begin{matrix}3x\ne-y\\3x\ne y\end{matrix}\right.\)

 

a. \(\dfrac{x}{3x+y}+\dfrac{x}{3x-y}-\dfrac{2xy}{y^2-9x^2}\)

\(=\dfrac{x.\left(3x-y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{x.\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}+\dfrac{2xy}{9x^2-y^2}\)

\(=\dfrac{x.\left(3x+y+3x-y\right)+2xy}{\left(3x-y\right).\left(3x+y\right)}\)

\(=\dfrac{6x^2+2xy}{\left(3x-y\right).\left(3x+y\right)}\)

\(=\dfrac{2x\left(3x+y\right)}{\left(3x+y\right).\left(3x-y\right)}\)

\(=\dfrac{2x}{3x-y}\)

15 tháng 2 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne-5\end{matrix}\right.\)

 

b. \(\dfrac{4x+5}{x^2+5x}-\dfrac{3}{x+5}\)

\(=\dfrac{4x+5}{x.\left(x+5\right)}-\dfrac{3x}{x.\left(x+5\right)}\)

\(=\dfrac{x+5}{x.\left(x+5\right)}\)

\(=\dfrac{1}{x}\)

12 tháng 9 2023

\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349

23 tháng 12 2021

a,\(\dfrac{x^2-9}{2x+6}:\dfrac{3-x}{2}=\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x+3\right)}.\dfrac{2}{3-x}=\dfrac{x-3}{3-x}=\dfrac{-\left(3-x\right)}{3-x}=-1\)

b, \(\dfrac{2x}{x-y}-\dfrac{2y}{x-y}=\dfrac{2x-2y}{x-y}=\dfrac{2\left(x-y\right)}{x-y}=2\)

23 tháng 12 2021

\(a,=\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x+3\right)}\cdot\dfrac{2}{-\left(x-3\right)}=\dfrac{x-3}{2}\cdot\dfrac{2}{-\left(x-3\right)}=-1\\ b,=\dfrac{2x-2y}{x-y}=\dfrac{2\left(x-y\right)}{\left(x-y\right)}=2\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) \({x^2} + \dfrac{1}{4}{x^2} - 5{x^2} = (1 + \dfrac{1}{4} - 5){x^2} =  - \dfrac{{15}}{4}{x^2}\);

b) \({y^4} + 6{y^4} - \dfrac{2}{5}{y^4} = (1 + 6 - \dfrac{2}{5}){y^4} = \dfrac{{33}}{5}{y^4}\).

a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y

=5x^3-7x^2y+2xy^2+5x-2y

b: =(x^2-1)(x+2)

=x^3+2x^2-x-2

c: =1/2x^2y^2(4x^2-y^2)

=2x^4y^2-1/2x^2y^4

d: =(x^2-1/4)(4x-1)

=4x^3-x^2-x+1/4

e: =x^2-2x-35+(2x+1)(x-3)

=x^2-2x-35+2x^2-6x+x-3

=3x^2-7x-38

21 tháng 10 2021

\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)

\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)

21 tháng 10 2021

all ạ