K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

Ta có:\(AH=HK\left(gt\right);AE=ED\left(gt\right)\Rightarrow\)EH là đường trung bình trong tam giác AKD⇒EH//DK⇒BC//DK

20 tháng 11 2021

🍬

24 tháng 10 2021

b) Xét tam giác ABF có:

BH là đường cao(AH⊥BH)

BH là phân giác( BC là phân giác \(\widehat{ABF}\))

=> Tam giác ABF cân tại B

=> AB=BF

Mà AB=CE(ΔMBA=ΔMCE)

=> CE=BF

c) Ta có: \(\widehat{ABC}=\widehat{BCE}\left(\Delta MBA=\Delta MCE\right)\)

Mà \(\widehat{ABC}=\widehat{KBC}\)(BC là phân giác \(\widehat{ABF}\))

\(\Rightarrow\widehat{BCE}=\widehat{KBC}\)

=> Tam giác KBC cân tại K

=> KM là đường trung tuyến cũng là đường phân giác \(\widehat{BKC}\left(1\right)\)

Ta có: KB=KC(KBC cân tại K), BF=CD(cmt)

=> KB-BF=KC-CE=> KF=KE

Xét tam giác BEK và tam giác CFK có:

KF=KE(cmt)

\(\widehat{K}\) chung

BK=KB(KBC cân tại K)

=> ΔBEK=ΔCFK(c.g.c)

=> \(\widehat{EBK}=\widehat{KCF}\)

Xét tam giác BFC và tam giác CEB có:

BC chung

\(\widehat{FBC}=\widehat{BCE}\)(cmt)

BF=CE(cmt)

=> ΔBFC=ΔCEB(c.g.c)

=> \(\widehat{BFC}=\widehat{BEC}\)

Xét tam giác BFI và tam giác CEI có:

\(\widehat{BFC}=\widehat{BEC}\left(cmt\right)\)

BF=CE(cmt)

\(\widehat{FBI}=\widehat{ECI}\left(cmt\right)\) 

=> ΔBFI=ΔCEI(g.c.g)

=> IF=IC

=> ΔIFK=ΔIEK(c.c.c)

=> KI là phân giác \(\widehat{BKC}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow M,I,K\) thẳng hàng

 

 

24 tháng 10 2021

cảm ơ cj :33

Câu 9.

Tại điểm \(I\)\(i=r=0\)

Tia sáng truyền thẳng vào lăng kính.

Tại điểm J có \(i_J=30^o\)

Theo định luật khúc xạ ánh sáng:

\(sinr=nsini_J=1,5\cdot sin30^o=\dfrac{3}{4}\Rightarrow r=arcsin\dfrac{3}{4}\)

Góc lệch:

\(D=r-i_J=arcsin\dfrac{3}{4}-30^o\approx18,6^o\)

Chọn B.

Hình vẽ tham khảo sgk lí 11!!!

undefined

Theo đinh luật khúc xạ ánh sáng (tại điểm \(I\)) :

\(sini_1=nsinr_1\)

\(\Rightarrow sin45^o=\sqrt{2}\cdot sinr_1\Rightarrow sinr_1=\dfrac{1}{2}\Rightarrow r_1=30^o\)

Tam giác ABC đều\(\Rightarrow\)Góc chiết quang \(\widehat{A}=60^o=r_1+r_2\)

\(\Rightarrow r_2=30^o\)

Xét tại điểm J, theo định luật khúc xạ ánh sáng:

\(sini_2=nsinr_2=\sqrt{2}\cdot sin30^o=\dfrac{\sqrt{2}}{2}\Rightarrow i_2=45^o\)

Góc lệch tia ló ra khỏi lăng kính so với tia tới:

\(D=i_1+i_2-A=45^o+45^o-60^o=30^o\)

Chọn A

undefined

11 tháng 12 2023

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

29 tháng 11 2023

Để chứng minh a là trung điểm của HK, ta cần chứng minh rằng a là trung điểm của HK.

 

Gọi a là trung điểm của HK, ta cần chứng minh rằng HA = AK.

 

Ta có:

- Tam giác ABC là tam giác cân tại A, nên AH là đường cao của tam giác ABC và cắt BC thành hai phần bằng nhau. Vậy H là trung điểm của BC.

- Ta biết MN là đường thẳng vuông góc với BC, nên HK là đường cao của tam giác MNK và cắt MN thành hai phần bằng nhau. Vậy K là trung điểm của MN.

 

Vậy ta có AH = HK và AK là đường trung bình của tam giác AMN.

 

Ta cần chứng minh AK = HA.

 

Gọi P là giao điểm của AK và HA.

 

Ta có:

- Ta biết AH = HK, nên tam giác AHK là tam giác cân tại H. Vậy góc AHK = góc AKH.

- Ta biết MN là đường thẳng vuông góc với BC, nên tam giác MNK là tam giác vuông tại K. Vậy góc MNK = 90 độ.

- Ta biết AK là đường trung bình của tam giác AMN, nên góc AKH = góc MNK.

 

Từ các quan sát trên, ta có:

góc AHK = góc AKH = góc MNK = 90 độ.

 

Vậy tứ giác AKHG là hình chữ nhật với AK = HG.

 

Vậy ta đã chứng minh được a là trung điểm của HK.

27 tháng 10 2023

a: Xét tứ giác AMKN có

\(\widehat{AMK}=\widehat{ANK}=\widehat{MAN}=90^0\)

=>AMKN là hình chữ nhật

b: Xét ΔABC có

K là trung điểm của BC

KM//AC

Do đó: M là trung điểm của AB

Xét ΔABC có

K là trung điểm của BC

KN//AB

Do đó: N là trung điểm của AC

Xét tứ giác AKBE có

M là trung điểm chung của AB và KE

nên AKBE là hình bình hành

Xét hình bình hành AKBE có AB\(\perp\)KE

nên AKBE là hình thoi

c: Xét tứ giác AKCF có

N là trung điểm chung của AC và KF

nên AKCF là hình bình hành

=>CF//AK và CF=AK

AKBE là hình bình hành

=>BE//AK và BE=AK

BE//AK

CF//AK

Do đó: BE=CF

BE=AK

CF=AK

Do đó: BE=CF