K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta có x – 3 = 2m + 4

      ⇔ x = 2m + 4 + 3

      ⇔ x = 2m + 7

Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > - 7/2

12 tháng 4 2023

a) \(x-3=2m+4\)

\(\Leftrightarrow x=2m+4+3\)

\(\Leftrightarrow x=2m+7\)

Phương trình có nghiệm dương khi \(2m+7>0\Leftrightarrow m>-\dfrac{7}{2}\)

b) \(2x-5=m+8\)

\(\Leftrightarrow2x=m+8+5\)

\(\Leftrightarrow2x=m+13\)

\(\Leftrightarrow x=\dfrac{m+13}{2}\)

Phương trình có nghiệm âm khi: \(\dfrac{m+13}{2}< 0\Leftrightarrow m< -13\)

c) \(x-2=3m+4\)

\(\Leftrightarrow x=3m+4+2\)

\(\Leftrightarrow x=3m+6\)

Phương trình có nghiệm lớn hơn 3 khi: \(3m+6>3\Leftrightarrow m>-1\)

25 tháng 4 2018

x 2 - 2mx + 2m – 1 = 0

Δ = b 2  - 4ac = 2 m 2  - 4.(2m - 1) = 4 m 2  -8m + 4 = 4 m - 1 2

Do Δ = 4 m - 1 2 ≥ 0 ∀ m nên phương trình luôn có nghiệm với mọi m

6 tháng 4 2018

a. Ta có x – 3 = 2m + 4

⇔ x = 2m + 4 + 3

⇔ x = 2m + 7

Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > \(\dfrac{-7}{2}\)

b. Ta có: 2x – 5 = m + 8

⇔ 2x = m + 8 + 5

⇔ 2x = m + 13

⇔ x = \(\dfrac{-\left(x+13\right)}{2}\)

Phương trình có nghiệm số âm khi \(\dfrac{-\left(m+13\right)}{2}\) < 0 ⇔ m + 13 < 0 ⇔ m < -13

3 tháng 5 2018

x – 2 = 3m + 4

⇔x = 3m + 6

Phương trình x – 2 = 3m + 4 có nghiệm lớn hơn 3 khi và chỉ khi: 3m + 6 > 3.

Giải: 3m + 6 > 3 có m > -1

Vậy với m > -1 thì phương trình ẩn x là x – 2 = 3m + 4 có nghiệm lớn hơn 3.

21 tháng 1 2022

a) Để phương trình trên là phương trình bậc nhất thì: m≠\(\dfrac{3}{8}\)

c) Để phương trình vô nghiệm thì: m=0

d) Để phương trình vô số nghiệm thì m=\(\dfrac{3}{8}\)

21 tháng 1 2022

a/ \(\left(2m-3\right)x+\left(x-3\right)4m+2mx=0\)

\(\Leftrightarrow\left(8m-3\right)x-12m=0\)

Để phương trình là hàm số bậc 1 :

\(8m-3\ne0\Leftrightarrow m\ne\dfrac{3}{8}\)

b/ Phương trình vô nghiệm :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m\ne0\end{matrix}\right.\)

c/ Phương trình vô số nghiệm khi :

\(\Leftrightarrow\left\{{}\begin{matrix}8m-3=0\\12m=0\end{matrix}\right.\)

 

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.