K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

\(a,=\dfrac{x+8\sqrt{x}+8-\left(\sqrt{x+2}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{2\sqrt{x}+x+5}\)

\(=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

Vậy \(P=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

 

 

 

28 tháng 8 2021
Chờ tui tui đg lm

a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)

Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)

\(=\sqrt{x\sqrt{x^{1+\dfrac{1}{2}}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x\cdot x^{\dfrac{1}{2}\cdot\dfrac{3}{2}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x^{1+\dfrac{3}{4}}}:x^{\dfrac{5}{8}}\)

\(=x^{\dfrac{1}{2}\cdot\dfrac{7}{4}}:x^{\dfrac{5}{8}}=x^{\dfrac{7}{8}-\dfrac{5}{8}}=x^{\dfrac{1}{4}}=\sqrt[4]{x}\)

=>A

2 tháng 4 2022

\(x=3-2\sqrt{2}=\sqrt{2^2}-2.1.\sqrt{2}+1^2=\left(\sqrt{2}-1\right)^2\)

\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-4}{\sqrt{\left(\sqrt{2}-1\right)^2-2}}=\dfrac{\sqrt{2}-1-4}{\sqrt{2}-1-2}=\dfrac{\sqrt{2}-5}{\sqrt{2}-3}\)

 

 

 

 

3 tháng 4 2022

Viết bình phương chưa đúng 

\(x=3-2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}\right)^2+2.\sqrt{2}.1+1^2=\left(\sqrt{2}+1\right)^2\)

ko nên viết bình vào căn nhé :)

1: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\cdot\left(\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\right)\)

\(=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

2: Thay x=9 vào A, ta được:

\(A=\dfrac{3}{3+1}=\dfrac{3}{4}\)

Câu 1:   Kết quả so sánh 3 và căn 8là:   A. 3 > \(\sqrt{8}\)        B. 3 < \(\sqrt{8}\)       C. 3 ≤ \(\sqrt{8}\)          D. \(\sqrt{3}\)< \(\sqrt{8}\)Câu 2. \(\sqrt{3x-2}\)  xác định khi và chỉ khi:A.    x ≥ 0             B. x ≥ \(\dfrac{2}{3}\)              C. x ≥ \(\dfrac{3}{2}\)                D. x < \(\dfrac{2}{3}\)Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\)  bằng: A.  \(3-2\sqrt{2}\)     ...
Đọc tiếp

Câu 1:   Kết quả so sánh 3 và căn 8là:

  A. 3 > \(\sqrt{8}\)        B. 3 < \(\sqrt{8}\)       C. 3 ≤ \(\sqrt{8}\)          D. \(\sqrt{3}\)\(\sqrt{8}\)

Câu 2. \(\sqrt{3x-2}\)  xác định khi và chỉ khi:

A.    x ≥ 0             B. x ≥ \(\dfrac{2}{3}\)              C. x ≥ \(\dfrac{3}{2}\)                D. \(\dfrac{2}{3}\)

Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\)  bằng:

 A.  \(3-2\sqrt{2}\)      B.  \(1-\sqrt{2}\)           C.  \(\sqrt{2}-1\)           D. \(2\sqrt{2}+3\)

Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:

            A.   \(-b\sqrt{a}\)         B.    \(b\sqrt{a}\)     C  .\(a\sqrt{b}\)            D.  \(-a\sqrt{b}\)

Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\)  (với a b cùng dấu) ta được:

   A.  \(\dfrac{\sqrt{2ab}}{a}\)         B.  \(\dfrac{\sqrt{2ab}}{b}\)        C.  \(\dfrac{\sqrt{2ab}}{-b}\)                D.  \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)

Câu 6: Hàm số y =  \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:

          A. m ≠ 5            B. m > 5             C. m < 5           D. m  = 5

Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:

     A. (d1)          B. (d2)           C. (d3)             D. (d1) và (d3)

Câu 8:   Hai đường thẳng y = -3x +4  và y = (m+1)x +m  song song với nhau khi m bằng:

          A. 4                      B. -2                     C. -3                     D. -4

Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?

   A. y =   \(7+\left(\sqrt{2}-3\right)x\)       B. y = \(4-\left(1-\sqrt{3}\right)x\)           C. y = \(-5-\left(1-\sqrt{2}\right)x\)            D. y = 4+ x

Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?

     A. y=x +2 và  y= -x+2                   B. y= -3-2x và  y= -2x-3                

C. y= 2x -1 và  y= 2+3x                     D. y=1 – 2x và  y= -2x+3

Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?

A.y+ x = -1           B. 2x + y = 1        C. 2y = 2 – 2x      D. 3y = -3x +1

Câu 12:  Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?

A.(1; -1)             B. ( -1; 1)                  C. (3;2)                D. (2; 3)

 

1

Câu 1: A

Câu 2: B

Câu 3: C

NV
30 tháng 7 2021

a.

Đặt \(\sqrt{x}+1=t\Rightarrow t\ge3\)

\(\sqrt{x}=t-1\)

\(\Rightarrow D=\dfrac{\left(t-1\right)^2-\left(t-1\right)+2}{t}=\dfrac{t^2-3t+4}{t}=t+\dfrac{4}{t}-3\)

\(D=\dfrac{4t}{9}+\dfrac{4}{t}+\dfrac{5t}{9}-3\ge2\sqrt{\dfrac{16t}{9t}}+\dfrac{5}{9}.3-3=\dfrac{4}{3}\)

\(D_{min}=\dfrac{4}{3}\) khi \(t=3\) hay \(x=4\)

NV
30 tháng 7 2021

b.

Đặt \(\sqrt{x}+2=t\Rightarrow t\ge4\)

\(\Rightarrow\sqrt{x}=t-2\)

\(M=\dfrac{\left(t-2\right)^2+8}{t}=\dfrac{t^2-4t+12}{t}=t+\dfrac{12}{t}-4\)

\(M=\dfrac{3t}{4}+\dfrac{12}{t}+\dfrac{1}{4}t-4\)

\(M\ge2\sqrt{\dfrac{36t}{4t}}+\dfrac{1}{4}.4-4=3\)

\(M_{min}=3\) khi \(t=4\) hay \(x=4\)

a) Ta có: \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)