Cho vật thể H nằm giữa hai mặt phẳng x=0;x=1. Biết rằng thiết diện của vật thể H cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x( 0 ≤ x ≤ 1 ) là một tam giác đều có cạnh là 4 ln ( 1 + x ) Giả sử thể tích V của vật thể có kết quả là V = a b ( c ln 2 - 1 ) với a, b, c là các số nguyên. Tính tổng S= a 2 - a b + c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bởi hai mặt phẳng x = a và x = b là
V = ∫ a b S x d x
Chọn B
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bửi hai mặt phẳng x = a và x = b là
Thiết diện của vật thể và mặt phẳng vuông góc với trục Ox là tam giác đều có diện tích
Đáp án A
Gọi S(x) là diện tích thiết diện đã cho thì S x = 2 sin x 2 . 3 4 = 3 sin x
Thể tích vật thể là V = ∫ 0 π S x d x = ∫ 0 π 3 sin x d x = 2 3
Đáp án C
Đáp án C
Do thiết diện là một tam giác đều nên diện tích thiết diện là:
Chọn A
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bới hai mặt phẳng x = a và x =b là
Chọn A
Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bới hai mặt phẳng x = a và x =b là V = ∫ a b S x d x .
Đáp án B.