K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

bn ơi đề kiu j vậy
 

26 tháng 1 2016

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}=\sqrt{a}-\sqrt{a-1}\)
Áp dụng cái này vào là ra bạn nhé

14 tháng 2 2019

c)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)

\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có  7 số 1)

\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(7+1-\frac{1}{8}=\frac{63}{8}\)

Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé

Chúc bạn học tốt !!!

19 tháng 12 2021

#include <bits/stdc++.h>

using namespace std;

long long s,i,n;

int main()

{

cin>>n;

s=0;

for (i=1; i<=n; i++)

s=s+i;

cout<<s;

return 0;

}

31 tháng 8 2023

\(A=\sqrt[]{1+2+3+...+\left(n-1\right)+n+...+3+2+1}\)

Ta có :

\(1+2+3+...+\left(n-1\right)=\left(n-1\right)+...+3+2+1=\left[\left(n-1\right)-1\right]+1\left(n-1+1\right):2\)

\(=\dfrac{\left(n-1\right)n}{2}\)

\(\Rightarrow A=\sqrt[]{\dfrac{\left(n-1\right)n}{2}.2+n}\)

\(\Rightarrow A=\sqrt[]{\left(n-1\right)n+n}\)

\(\Rightarrow A=\sqrt[]{n^2-n+n}\)

\(\Rightarrow A=\sqrt[]{n^2}\)

\(\Rightarrow A=n\left(n>0\right)\)

\(\Rightarrow dpcm\)

31 tháng 8 2023

mơn trí

31 tháng 3 2019

Đề bài sai phải ko???

AH
Akai Haruma
Giáo viên
7 tháng 12 2023

Lời giải:
a.

\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)

\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)

b.

\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 10B\Rightarrow A< B$