1/√1+√2+1/√2+√3+...+1/√n-1+√n=11. Tính n.
Các Bạn Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
#include <bits/stdc++.h>
using namespace std;
long long s,i,n;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++)
s=s+i;
cout<<s;
return 0;
}
\(A=\sqrt[]{1+2+3+...+\left(n-1\right)+n+...+3+2+1}\)
Ta có :
\(1+2+3+...+\left(n-1\right)=\left(n-1\right)+...+3+2+1=\left[\left(n-1\right)-1\right]+1\left(n-1+1\right):2\)
\(=\dfrac{\left(n-1\right)n}{2}\)
\(\Rightarrow A=\sqrt[]{\dfrac{\left(n-1\right)n}{2}.2+n}\)
\(\Rightarrow A=\sqrt[]{\left(n-1\right)n+n}\)
\(\Rightarrow A=\sqrt[]{n^2-n+n}\)
\(\Rightarrow A=\sqrt[]{n^2}\)
\(\Rightarrow A=n\left(n>0\right)\)
\(\Rightarrow dpcm\)
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
bn ơi đề kiu j vậy
\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}=\sqrt{a}-\sqrt{a-1}\)
Áp dụng cái này vào là ra bạn nhé