Cho đường thẳng d m x = 1 + 2 t y = 1 - m t , t ∈ R z = - 2 + m t . Giá trị m
để khoảng cách từ gốc tọa độ tới d m là lớn nhất là.
A. -4
B. -2
C. 1
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao điểm d và (P) thỏa mãn:
\(4\left(1+2t\right)-\left(-2-t\right)-\left(1-t\right)+5=0\)
\(\Rightarrow t=-1\)
Thay vào pt (d) \(\Rightarrow M\left(-1;-1;2\right)\)
1.
d1 nhận \(\left(m;1\right)\) là 1 vtpt
d2 nhận \(\left(1;m\right)\) là 1 vtpt
Để 2 đường thẳng cắt nhau
\(\Leftrightarrow m^2\ne1\Rightarrow m\ne\pm1\)
2.
d1 nhận \(\left(m;1\right)\) là 1 vtpt
d2 nhận \(\left(1;m\right)\) là 1 vtpt
Để 2 đường thẳng song song hoặc trùng nhau
\(\Rightarrow m^2=1\Rightarrow m=\pm1\)
Để 2 đường thẳng song song \(\Rightarrow m=-1\)
7. Bạn viết đề ko đúng, nhìn đáp án B là biết bạn viết thiếu
3.
\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)
\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)
\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)
\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)
\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)
\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)
4.
Gọi (Q) là mặt phẳng chứa d và vuông góc (P)
(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt
Phương trình (Q):
\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)
d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:
\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)
\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp
Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)
1/
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)
\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)
2/
Đặt \(z=x+yi\)
\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)
\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)
Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)
\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)
\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)
Đáp án C
Gọi H là hình chiếu vuông góc của điểm M trên đường thẳng Δ. Ta có:
H ∈ Δ => H(1 + t; 2 + t; 1 + 2t)
u Δ → = (1; 1; 2), MH → = (1- t; t + 1; 2t - 3)
MH ⊥ Δ <=> u Δ → . MH → = 0 <=> 1.(t - 1) + 1.(t + 1) + 2(2t - 3) = 0
<=> 6t - 6 = 0 <=> t = 1 => H(2; 3; 3)
Đường thẳng
d m x = 1 + 2 t y = 1 - m t , t ∈ R z = - 2 + m t đi qua điểm cố định M ( 1;0;-2 )
Vậy khoảng cách từ O tới d m là h < O M để khoảng cách này đạt giá trị lớn nhất bằng OM
⇒ O M 1 ; 0 ; - 2 ⊥ u 2 ; 1 ; - m ; m ⇔ 2 - 2 m = 0 ⇒ m = 1
Đáp án cần chọn là C