Cho hàm số y = f(x) có đồ thị (C) như trong hình vẽ bên
Phương trình f(x) - 2m = 0 có ba nghiệm phân biệt khi và chỉ khi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Phương pháp
+) Đặt t=2sinx, xác định điều kiện của t.
+) Khi đó phương trình trở thành f(t)=m. Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và đường thẳng y=m song song với trục hoành.
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và đường thẳng y=m song song với trục hoành.
⇒ Phương trình f(t)=m có 1 nghiệm t=2 và một nghiệm t ∈ - 2 ; 2 hoặc phương trình f(t)=m có 1 nghiệm t=-2 và một nghiệm t ∈ - 2 ; 2 .
Phương trình f ( x ) + m = 0 ⇔ f ( x ) = - m có bốn nghiệm thực phân biệt khi và chỉ khi đường thẳng y=-m cắt đồ thị hàm số đã cho tại bốn điểm phân biệt ⇔ 1 - < m < 0 ⇔ 0 < m < 1
Chọn đáp án C.
Chọn D