K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Lời giải:

a. $E$ đối xứng với $M$ qua $AC$ 

$\Rightarrow AC$ là trung trực của $ME$

$\Rightarrow AC\perp ME$ tại trung điểm $P$ của $ME$

$\Rightarrow \widehat{P}=90^0$

Tứ giác $MQAP$ có 3 góc $\widehat{A}=\widehat{Q}=\widehat{P}=90^0$ nên là hcn 

$\Rightarrow AM=PQ$

b.

$AP\perp ME$

$QM\perp ME$ (do $AQMP$ là hcn)

$\Rightarrow AP\parallel QM$

$\Rightarrow AP\parallel FM$

Áp dụng định lý Talet:

$\frac{AP}{FM}=\frac{EP}{EM}=\frac{1}{2}$

$\Rightarrow 2AP=FM=FQ+QM$

Mà $AP=QM$ (do $AQMP$ là hcn)

$\Rightarrow 2AP=FQ+AP\Rightarrow AP=FQ$

$\Rightarrow QM=FQ$

Ta thấy $FM\perp AB$ tại $Q$ mà $FQ=QM$ nên $F,M$ đối xứng nhau qua $Q$

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Hình vẽ:

16 tháng 10 2021

a: Ta có: E và H đối xứng nhau qua AB

nên AB là đường trung trực của EH

Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH

Ta có: H và F đối xứng nhau qua AC

nên AC là đường trung trực của HF

Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH

Xét tứ giác AMHN có 

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng

11 tháng 12 2017

A B C M P Q D E 1 2 3 4 2 2 1 1

a) Dễ thấy tứ giác ADME có 3 góc vuông nên nó là hình chữ nhật.

Tam giác PBM co BP là đường trung trực nên nó là tam giác cân. Vậy thì BP là phân giác hay \(\widehat{B_1}=\widehat{B_2}\)

Tương tự \(\widehat{C_1}=\widehat{C_2}\) mà \(\widehat{B_1}+\widehat{C_1}=90^o\) nên \(\widehat{PBM}+\widehat{MCQ}=2\left(\widehat{B_1}+\widehat{C_1}\right)=180^o\)

Chúng lại ở vị trí trong cùng phía nên PB // QC

Vậy BCQP là hình thang.

b) Áp dụng Pi-ta-go : \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.6.8=24\left(cm^2\right)\)

c) Do AB là trung trực PM nên AP = AM

Tương tự AQ = AM nên AP = AQ.

Lại có \(\widehat{A_1}=\widehat{A_2};\widehat{A_3}=\widehat{A_4}\) mà \(\widehat{A_2}+\widehat{A_3}=90^o\Rightarrow\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=180^o\)

hay A, P, Q thẳng hàng.

Từ đó ta có A là trung điểm PQ.

d) Gọi AH là đường cao hạ từ A xuống BC.

Ta có 

\(P_{PBCQ}=PQ+PB+BC+CQ=2AM+PB+BM+MC+CQ=2AM+2BC=2\left(AM+BC\right)\)

Áp dụng bất đẳng thức Cô-si ta thấy \(AM+BC\ge2\sqrt{AM.BC}\)

mà AM là đường xiên nên \(AM\ge AH\)

Vậy thì \(AM+BC\ge2\sqrt{AM.BC}\ge2\sqrt{AH.BC}=2\sqrt{AB.AC}\)

Vậy thì \(minP_{PBCQ}=2\sqrt{AB.AC}\) khi M là chân đường cao hạ từ A xuống BC.

18 tháng 12 2021

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật