K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

a: Xét tứ giác ADHE co

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: IO//AC

AC vuông góc HE

=>IO vuông góc HE

mà ΔOEH cân tại O

nên góc EOI=góc HOI

Xét ΔEOI và ΔHOI có

OE=OH

góc EOI=góc HOI

OI chung

Do đó: ΔEOI=ΔHOI

=>góc EIO=góc HIO

=>IO là phân giác của góc EIH

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

28 tháng 7 2019

Gợi ý:  A F E ^ = A H E ^  (tính chất hình chữ nhật và  A H E ^ = A B H ^  (cùng phụ  B H E ^ )

24 tháng 2 2023

Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)\(\left(1\right)\)

Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)

=> tứ giác AEHF là h.c.n

=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)

vì \(\widehat{E_1}+\widehat{BEF}=180^o\)

\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau

=> tứ giác BEFC nội tiếp

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH=EF

b: góc IFE=90 độ

=>góc IFH+góc EFH=90 độ

=>góc IFH+góc AHF=90 độ

=>góc IFH=góc IHF

=>IH=IF và góc IFC=góc ICF

=>IH=IC

=>I là trung điểm của HC

Xét ΔHAC có HO/HA=HI/HC

nên OI//AC và OI=AC/2

=>OI//AK và OI=AK

=>AOIK là hình bình hành