Có bao nhiêu số nguyên m để phương trình 4 x − m .2 x + 1 + 2 m = 0 có hai nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 3 ?
A. 2.
B. 0.
C. 1.
D. 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Đặt \(\left|x\right|=t\ge0\)
\(\Rightarrow t^2-2t+1-m=0\) (1)
Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t
Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)
Có bao nhiêu giá trị nguyên của tham số m để phương trình x^2 -2|x| +1-m = 0 có 4 nghiệm phân biệt ?
Điều kiện xác định x∈Rx∈R.
Đặt t=√x2+1 (t≥1t≥1)
Phương trình trở thành t2−1−4t−m+1=0
⇔t2−4t=m
⇔t2−4t=m. (1)
Để phương trình có 44 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt lớn hơn 11.
Xét hàm số f(t)=t2−4t có đồ thị là parabol có hoành độ đỉnh x=2∈(1;+∞) nên ta có bảng biến thiên:
Dựa BBT ta thấy để (1) có hai nghiệm phân biệt lớn hơn 11 thì −4<m<−3
Vậy không có giá trị nguyên của mm thỏa mãn yêu cầu bài toán.
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm
Ta có: \(\left(x-2\right)\left(x^2-7x+41\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Thay x=2 vào (2), ta được:
\(2^2-2m+m^2-5m+8=0\)
\(\Leftrightarrow m^2-7m+12=0\)
\(\Leftrightarrow\left(m-3\right)\left(m-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=4\end{matrix}\right.\)
Vậy: Có 2 giá trị nguyên của m thỏa mãn hai phương trình có nghiệm chung
\(\Delta=\left[-\left(m+3\right)\right]^2-4\left(2m+2\right)\\ =m^2+6m+9-8m-8\\ =m^2-2m+1\\ =\left(m-1\right)^2\)
de pt co 2 no pb thi Δ >0
<=> (m-1)^2>0
ma \(\left(m-1\right)^2\ge0\forall m\\ \Rightarrow\left(m-1\right)^2\ne0\\ \Leftrightarrow m\ne1\)
Viet: \(x1+x2=m+3\\ x1x2=2m+2\)
0<x1<x2<2\(\Rightarrow\left\{{}\begin{matrix}0< x1+x2< 4\\0< x1x1< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0< m+3< 4\\0< 2m+2< 4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-3< m< 1\\-1< m< 1\end{matrix}\right.\\ \Leftrightarrow-1< m< 1\)
ĐKXĐ: ...
\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)
\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)
\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)
Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm
Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb
\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)
\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)
Đáp án C
Đặt t = 2 x > 0 . Khi đó phương trình đã cho trở thành t 2 − 2 m t + 2 m = 0 , t > 0 1
Để phương trình ban đầu có 2 nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 thì (1) có 2 nghiệm t>0 và thỏa mãn t 1 t 2 = 2 x 1 2 x 2 = 2 3 = 8
Khi đó ta có: Δ ' = m 2 − 2 m ≥ 0 S = 2 m > 0 P = 2 m = 8 > 0 ⇔ m = 4 Vậy có 1 giá trị nguyên của m thỏa mãn đề bài cho