Một vật dao động điều hòa với biên độ a và tần số f. Tại thời điểm t vật có vận tốc và đang tăng. Tại thời điểm vật có vận tốc bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính vận tốc của vật tại thời điểm t+ T/4, ta có thể sử dụng công thức vận tốc của vật dao động điều hòa:
v = -ωA sin(ωt + φ)
Trong đó: v là vận tốc của vật (cm/s) ω là tần số góc của vật (rad/s) A là biên độ của vật (cm) t là thời gian (s) φ là pha ban đầu của vật (rad)
Theo đề bài, tần số góc của vật là 10 rad/s và li độ của vật là 5 cm. Ta không có thông tin về pha ban đầu của vật, nên không thể tính chính xác vận tốc của vật tại thời điểm t+ T/4.
Tai thời điểm t = 0,5s ta có
Li độ: x = 24.cos( π .0,5/2 + π ) = 24cos5 π /4 = -16,9 ≈ 17 cm
Vận tốc : v = - 24. π /2.sin( π .0,5/2 + π ) = -24.π/2.sin5 π /4 = 6 π 2 cm/s = 26,64 cm/s ≈ 27 cm/s
Gia tốc : a = - π / 2 2 .x = - π / 2 2 .(-16,9) = 41,6 cm/ s 2 ≈ 42 (cm/ s 2 )
Câu 1.
a)Tốc độ góc: \(\omega=2\pi f=2\pi\)
Ta có: \(A=\sqrt{x^2+\dfrac{v^2}{\omega^2}}=\sqrt{0,05^2+\dfrac{\left(0,10\pi\right)^2}{\left(2\pi\right)^2}}=\dfrac{\sqrt{2}}{20}m\)
b)Phương trình vận tốc:
\(v=-\omega Asin\left(\omega t+\varphi\right)=-2\pi\cdot\dfrac{\sqrt{2}}{20}sin\left(2\pi t\right)\)
Câu 2.
a)Chu kỳ: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{5\pi}=0,4s\)
b)Li độ tại thời điểm \(t=2s:\)
\(x=2cos\left(5\pi t+\dfrac{\pi}{3}\right)=2cos\left(5\pi\cdot2+\dfrac{\pi}{3}\right)=1\)