K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

Đáp án C

Đồ thị hàm số  y = x + 1 x 2 - 2 m x + 2 m + 3 không có tiệm cận đứng khi và chỉ khi

 

24 tháng 10 2018

Đáp án D

Đồ thị hàm số y = x + 1 x 2 − 2 mx + 2 m + 3 không có tiệm cận đứng khi và chỉ khi x 2 − 2 mx + 2 m + 3 = 0  vô nghiệm hay  Δ ' = m 2 − 2 m − 3 < 0 ⇔ − 1 < m < 3 .

23 tháng 8 2019

Đáp án C

Đồ thị hàm số  y = x + 1 x 2 - 2 m x + 2 m + 3  không có tiệm cận đứng khi và chỉ khi  vô nghiệm hay 

a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)

=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)

Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)

=>-1,5m=3

=>m=-2

b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)

=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)

Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2

=>m=2

c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)

=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)

=>2/b=2

=>b=1

=>\(y=\dfrac{ax+1}{x-2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)

=>a=3

 

 

NV
7 tháng 8 2021

Do mẫu có bậc 2 còn tử bậc 1 \(\Rightarrow\)hàm không có tiệm cận đứng khi và chỉ khi phương trình \(x^2-2mx+1=0\) vô nghiệm

\(\Leftrightarrow\Delta'=m^2-1< 0\)

\(\Rightarrow-1< m< 1\)

29 tháng 3 2019

y = x + 1 - x 2 + 3 x x 2 + ( m + 1 ) x - m - 2 = ( x + 1 ) 2 - ( x 2 + 3 x ) ( x + 1 + x 2 + 3 x ) ( x - 1 ) ( x + m + 2 ) = - 1 ( x + 1 + x 2 + 3 x ) ( x + m + 2 )

+ Vì bậc tử số < bậc mẫu số nên luôn có một tiệm cận ngang y= 0

+ Vì phương trình x + 1 + x 2 + 3 x   = 0   vô nghiệm nên chỉ có duy nhất một tiệm cận đứng nữa đó là đường thẳng  x= -m-2.

 Vậy với mọi x; đồ thị hàm số đã cho  luôn có hai tiệm cận.

Chọn C.

3 tháng 4 2018

Đáp án đúng : C

23 tháng 10 2017

Chọn A

Xét m = 0 thì đồ thị hàm số là đường thẳng y = -x là 1 đường thẳng nên không có đường tiệm cận đứng.

Xét m ≠ 0 khi đó đồ thị hàm số không có đường tiệm cận đứng nếu 

(khi đó hàm số suy biến có đạo hàm y’ = 0)

Vậy giá trị của m cần tìm là m = 0; m = ±1.

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)

Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)

=>\(m=-1\cdot2=-2\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)

=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)

4 tháng 7 2018

Chọn D

Đồ thị hàm số có đúng hai tiệm cận đứng

  có 2 nghiệm phân biệt khác 1.