cho a,b dương và\(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
Tính \(a^{2001}+b^{2001}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b dương và \(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
Tính \(a^{2014}+b^{2014}\)
Ta có:
\(a^{2001}+b^{2001}=a^{2000}+b^{2000}\)
\(a^{2001}+b^{2001}-a^{2000}-b^{2000}=0\)
\(a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\)
Vì: \(\left\{{}\begin{matrix}a^{2000}\ge0\forall x\\b^{2000}\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow a=b=1\)
\(\Rightarrow a^{2014}+b^{2014}=1+1=2\)
Từ đề ra : \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)
=> Chuyển vế và nhóm lại ta đc : \(a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\) (1)
Tương tự ta có : \(a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)
Trừ 2 cho 1 : \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\) ( bạn phân tích là đc như vậy )
Vì các số hạng trên đều \(\ge0\)
Nên : biểu thức bằng = khi các số hạng = 0
Bạn cho các số hạng =0 rồi tính ra đc :
\(\orbr{\begin{cases}a=0\\a=1\end{cases}}\) và \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)
Vì a,b dương nên \(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
=> \(a^{2011}+b^{2011}=1+1=2\)
\(a^{2000}+b^{2000}=a.a^{2000}+b.b^{2000}=a^2.a^{2000}+b^2.b^{2000}\)
a=b={0,1} là nghiệm
xét a,b \(\ne\left\{0,1\right\}\)
\(\left(1-a\right).a^{2000}=\left(b-1\right).b^{2000}\Leftrightarrow\frac{1-a}{b-1}=\left(\frac{b}{a}\right)^{2000}\)(1)
\(\left(1-a^2\right).a^{2000}=\left(b^2-1\right).b^{2000}\Rightarrow\frac{1-a^2}{b^2-1}=\left(\frac{b}{a}\right)^{2000}\)(2)
(1)&(2)=>\(\frac{1-a}{b-1}=\frac{1-a^2}{b^2-1}\Rightarrow\left(1-a\right)\left(b+1\right)=\left(1-a\right)\left(1+a\right)\Rightarrow a=b\)
Thay vào phương trình đầu: => a=b={0,1) a, b dương => a=b=1
a^20011+b^20011=2
\(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
\(\Leftrightarrow a^{2000}+b^{2000}=a\cdot a^{2000}+b\cdot b^{2000}=a^2\cdot a^{2000}+b^2\cdot b^{2000}\)
Mà a,b >0
\(\Rightarrow\hept{\begin{cases}a=a^2=1\\b=b^2=1\end{cases}\Rightarrow a=b=1}\)
Vậy \(a^{2011}+b^{2011}=1+1=2\)
True or False??!?
Ta có: \(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
\(\Rightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\\a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\end{cases}}\)
\(\Leftrightarrow a^{2000}\left(a-1\right)\left(a-1\right)+b^{2000}\left(b-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)
Ta có: \(\hept{\begin{cases}a^{2000}\left(a-1\right)^2\ge0\forall a>0\\b^{2000}\left(b-1\right)^2\ge0\forall b>0\end{cases}}\)\(\Leftrightarrow a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2\ge0\)
Mà \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-1=0\left(a>0\right)\\b-1=0\left(b>0\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)
\(M=a^{2017}+b^{2017}=1+1=2\)
Vậy \(M=2\)
không biết cách này đúng không nữa
\(a^{2000}+b^{2000}=a^{2001}+b^{2001}\Rightarrow a^{2001}+b^{2001}-a^{2000}-b^{2000}=0\)
\(\Rightarrow a^{2000}.\left(a-1\right)+b^{2000}.\left(b-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)(1)
\(a^{2002}+b^{2002}=a^{2001}+b^{2001}\Rightarrow a^{2002}+b^{2002}-a^{2001}-b^{2001}=0\)
\(\Rightarrow a^{2001}.\left(a-1\right)+b^{2001}.\left(b-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\left(\text{vì a,b dương nên }a^{2001}\text{và }b^{2001}\text{ lớn hơn 0}\right)\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)(2)
từ (1) và (2) => a=b=1=> M=2
p/s: trình độ thấp, sai bỏ qua
phần a nhé
1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a) do a+b+c=1
áp dụng bdt cosi cho các so dương a/b,b/a,a/c,c/a,b/c,c/b
a/b+b/a >=2
b/c+c/b>=2
a/c+c/a>=2
cộng hết vào suy ra 1/a+1/b+1/c >=9
B=2000+1+2002=4003
A=2000/2001+2001/2002
=2002.(2000+2001)/2001.2002
=2000+2001/2001<1
Mà B>1 suy ra A<B
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B
bạn ấn vào đúng 0 sẽ ra đáp án mình giải
a2001+b2001 =2