Cho hàm số y=f(x) liên tục trên R có bảng biến thiên như sau
Số nghiệm của phương trình f(x)-2=0 là:
A. 4.
B. 0.
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có . Đây là phương trình hoành độ giao điểm giữa đồ thị hàm số và đường thẳng .
Dựa vào bảng biến thiên ta thấy đường thẳng và đồ thị hàm số có đúng 1 điểm chung.
Ta có f(x)-3=0→f(x)=3. Đây là phương trình hoành độ giao điểm giữa đồ thị hàm số y=f(x) và đường thẳng y=3.
Dựa vào bảng biến thiên ta thấy đường thẳng y=3 và đồ thị hàm số y=f(x) có đúng 1 điểm chung.
Đáp án C
Đáp án C
Phương pháp: Từ BBT của đồ thị hàm số y = f(x) suy ra BBT của đồ thị hàm số y = f(|x|), số nghiệm của phương trình f(|x|) = 0 là số giao điểm của đồ thị hàm số y = f(|x|) và đường thẳng y = f(0)
Cách giải: Từ bảng biến thiên hàm số y = f(x) ta có bảng biến thiên hàm số f(|x|) = f(0) như sau:
Suy ra, phương trình f(|x|) = f(0) có 3 nghiệm
Vậy phương trình (*) có 4 nghiệm phân biệt