Trong các câu sau, câu nào đúng
a. cos 20 độ < sin 35 độ
b. sin 18 độ > sin 25 độ
c.cos 40 độ > sin 80 độ
d. sin 36 độ > cos 60 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: \(B=3-sin^290^0+2\cdot cos^260^0-3\cdot tan^245^0\)
\(=3-1+2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot1^2\)
\(=2-3+2\cdot\dfrac{1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\)
c: \(C=sin^245^0-2\cdot sin^250^0+3\cdot cos^245^0-2\cdot sin^240^0+4\cdot tan55\cdot tan35\)
\(=\left(\dfrac{\sqrt{2}}{2}\right)^2+3\cdot\left(\dfrac{\sqrt{2}}{2}\right)^2-2\cdot\left(sin^250^0+sin^240^0\right)+4\)
\(=\dfrac{1}{2}+3\cdot\dfrac{1}{2}-2+4\)
\(=2-2+4=4\)
\(A=sin42^0-cos48^0=cos\left(90^0-42^0\right)-cos48^0=cos48^0-cos48^0=0\)
\(B=cot56^0-tan34^0=tan\left(90^0-56^0\right)-tan34^0=tan34^0-tan34^0=0\)
\(C=sin30^0-cot50^0-cos60^0+tan40^0\)
\(=cos\left(90^0-30^0\right)-tan\left(90^0-50^0\right)-cos60^0+tan40^0\)
\(=cos60^0-tan40^0-cos60^0+tan40^0=0\)
\(A=\sin42^0-\cos48^0=\sin42^0-\sin42^0=0\)
\(B=\cot56^0-\tan34^0=\tan34^0-\tan34^0=0\)
a: \(cos32=sin58;cos53=sin37;cos8=sin82\)
18<37<44<58<82
=>\(sin18< sin37< sin44< sin58< sin82\)
=>\(sin18< cos53< sin44< cos32< cos8\)
b: 20<45
=>\(sin20< tan20\)
\(cot8=tan82;cot37=tan53\)
20<40<53<82
=>\(tan20< tan40< tan53< tan82\)
=>\(tan20< tan40< cot37< cot8\)
=>\(sin20< tan20< tan40< cot37< cot8\)
a) \(A=2sin30^o+3cos45^o-sin60^0\)
\(\Leftrightarrow A=2.\dfrac{1}{2}+3.\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)
\(\Leftrightarrow A=1+\dfrac{3\sqrt[]{2}}{2}-\dfrac{\sqrt[]{3}}{2}\)
\(\Leftrightarrow A=1+\dfrac{\sqrt[]{3}\left(\sqrt[]{6}-1\right)}{2}\)
b) \(B=3cos30^o+3sin45^o-cos45^o\)
\(\Leftrightarrow B=3\dfrac{\sqrt[]{3}}{2}+3\dfrac{\sqrt[]{2}}{2}-\dfrac{\sqrt[]{2}}{2}\)
\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\dfrac{2\sqrt[]{2}}{2}\)
\(\Leftrightarrow B=\dfrac{3\sqrt[]{3}}{2}+\sqrt[]{2}\)
a: \(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)
\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)
\(=2\cdot sin^270^0+1\)
b: \(=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)
\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)
=1+1
=2
\(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)
\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)
\(=2sin^270^0+1\)
\(B=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)
\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)
=1+1
=2
a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)
\(=a\cdot0+b\cdot1+c\cdot1\)
=b+c
b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)
\(=a\cdot0+b\cdot1+c\cdot0\)
=b
c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)
\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)
\(=a^2-c^2\)
a: \(cos70=sin20\)
20<25
=>\(sin20< sin25\)
=>\(cos70< sin25\)
b: \(\dfrac{sin50}{cos40}=\dfrac{cos\left(90-50\right)}{cos40}=\dfrac{cos40}{cos40}=1\)
a) Ta có:
\(cos70^o=sin\left(90^o-70^o\right)=sin20^o\)
Ta so sánh \(sin25^o\) và \(sin20^o\)
\(25^o>20^o\Rightarrow sin25^o>sin20^o\)
\(\Rightarrow sin25^o>cos70^o\)
b) \(\dfrac{sin50^o}{cos40^o}\)
Ta có:
\(cos40^o=sin\left(90^o-40^o\right)=sin50^o\)
\(\Rightarrow\dfrac{sin50^o}{cos40^o}=\dfrac{sin50^o}{sin50^o}=1\)
d
D