Tập xác định của hàm số f ( x ) = ( x - 3 ) 1 3 là
A . [ 3 ; + ∞ )
B . ( 3 ; + ∞ )
C . ℝ \ { 3 }
D . ℝ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \( - 5x + 3 \ge 0,\)tức là khi \(x \le \frac{3}{5}.\)
Vậy tập xác định của hàm số này là \(D = ( - \infty ;\frac{3}{5}]\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(x + 3 \ne 0,\)tức là khi \(x \ne - 3\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\)
a: f(x) có ĐKXĐ là 6-x>=0
=>x<=6
=>\(A=(-\infty;6]\)
g(x) có ĐKXĐ: là 2x+1<>0
=>\(x< >-\dfrac{1}{2}\)
=>\(B=R\backslash\left\{-\dfrac{1}{2}\right\}\)
\(A\cap B=(-\infty;6]\cap\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)\)
\(=(-\infty;6]\backslash\left\{\dfrac{1}{2}\right\}\)
\(A\cup B=R\)
\(A\text{B}=(-\infty;6]\backslash\left(R\backslash\left\{-\dfrac{1}{2}\right\}\right)=\left\{-\dfrac{1}{2}\right\}\)
\(B\backslash A=\left(6;+\infty\right)\)
Chọn B
Hàm số là hàm lũy thừa với số mũ không nguyên.
Điều kiện xác định: . Vậy tập xác định của hàm số đã cho là .