Tính nguyên hàm I = ∫ d x x x 2 + 4 bằng cách đặt t = x 2 + 4 , mệnh đề nào dưới đây đúng?
A. I = ∫ d t t 2 - 4
B. I = 1 2 ∫ d t t 2 - 4
C. I = ∫ d t t - 4
D. I = ∫ t d t t 2 - 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Đặt x = 2 sin t , t ∈ − π 2 ; π 2 ⇒ d x = 2 cos t d t . Đổi cận x = 0 ⇒ t = 0 x = 1 ⇒ t = π 6
Suy ra I = ∫ 0 π 6 2 4 − 4 sin 2 t .2 cos t d t = 2 ∫ 0 π 6 d t
\(\left\{{}\begin{matrix}u=x^2\\dv=cos2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2xdx\\v=\dfrac{1}{2}sin2x\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{2}x^2sin2x|^{\pi}_0-\int\limits^{\pi}_0x.sin2xdx\)
Đáp án C
Với y = x 2 − 1 ⇒ d u = 2 x d x .
Vậy I = ∫ u d u .
Đáp án A