chứng minh rằng nếu x+2/x-2 = y+3/y-3 thì x/2=y/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để cm thì ta cần cm nó đúng khi x+y=1
x+y=1
y=-(x-1) và x=-(y-1)
thế vào ta được
-(x-1)/(x^3-1)--(y-1)/(y^3-1)=2(x-y)/(x^2y^2+3)
ta có x^3-1=(x-1)(x^2+x+1),y^3-1=(y-1)(y^2+y+1)
từ đó rút gọn ta được -1/(x^2+x+1)+1/(y^2+y+1)=2(x-y)/(x^2y^2+3)
1/(y^2+y+1)-1/(x^2+x+1)=2(x-y)/(x^2y^2+3)
(x^2+x+1-y^2-y-1)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)
ta có x^2+x+1-y^2-y-1=x^2-y^2+x-y=(x-y)(x+y)+x-y=(x-y)(x+y+1)=2(x-y)
từ đó suy ra 2(x-y)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)
suy ra (y^2+y+1)(x^2+x+1)=x^2+y^2+3
x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1=x^2y^2+3
x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+x+y+1=x^2y^2+3
x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+2=x^2y^2+3
ta có xy^2+y^2+x^2y+xy+x^2
=xy(x+y)+xy+y^2+x^2
=x^2+2xy+y^2
=(x+y)^2
=1^2
=1
thế vào ta được
x^2y^2+3=x^2y^2+3
vậy pt trên đúng khi x+y=1
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
\(\dfrac{x+2}{x-2}=\dfrac{y+3}{y-3}\Rightarrow\left(x+2\right)\left(y-3\right)=\left(x-2\right)\left(y+3\right)\\ \Rightarrow xy-3x+2y-6=xy+3x-2y-6\\ \Rightarrow6x=4y\\ \Rightarrow3x=2y\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)