Chứng minh:
1-1/2+1/3+1/4+...+1/1990=1/996+1/997+1/1990
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1899}-\dfrac{1}{1990}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{1899}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1990}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{1990}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1990}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{1990}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{995}\right)\)
\(=\dfrac{1}{996}+\dfrac{1}{997}+...+\dfrac{1}{1990}\)(ĐPCM)
S= 1+1/3+…+1/1989)-(1/2+1/4+…+1/1990) (cộng cả SBT với ST) ta có:
S= (1+1/2+1/3+…+1/1989+1/1990)- (1+1/2+1/4+…+1/995)
S= 1/996+1/1997+…+1/1990 (đoạn từ 1 đến 1/995 bị trừ hết cho số trừ)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi