Cho hình chóp S.ABC có SA=SB=SC=AB=AC=a, BC=a 2 . Số đo góc giữa hai đường thẳng AB và SC bằng ?
A. 90 o
B. 60 o
C. 45 o
D. 30 o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Cách 1. Xác định và tính góc giữa hai đường thẳng
∆ ABC vuông tại A
Do SA = SB = SC nên nếu gọi H là hình chiếu vuông góc của S lên (ABC) thì H là tâm đường trong ngoại tiếp tam giác ABC mà ∆ ABC vuông tại A nên H là trung điểm của BC. Dựng hình bình hành ABCD. Khi đó (AB;SC) = (CD;SC) và CD = AB = a
∆
SBC vuông tại S (vì có SH là đường trung tuyến nên SH =
a
2
2
theo định lí Cô – Sin ta có
∆ SHD vuông tại H nên
∆ SCD có
Cách 2. (Hay phù hợp với bài này) Ứng dụng tích vô hướng
Đặt Theo giả thiết ta có:
Ta có:
Xét
Suy ra:
Chọn C
* Gọi H là hình chiếu vuông góc của S lên mặt phẳng (ABC), theo đầu bài SA=SB=SC và tam giác ABC vuông cân tại A ta có H là trung điểm của BC. Gọi M, N lần lượt là trung điểm của SA, SB ta có:
\(AB=\sqrt{SA^2+SB^2}=a\sqrt{2}\)
\(AC=\sqrt{SA^2+SC^2-2SA.SC.cos120^0}=\sqrt{3}\)
\(BC=\sqrt{SB^2+SC^2-2SB.SC.cos60^0}=a\)
\(\Rightarrow AB^2+BC^2=AC^2\Rightarrow\Delta ABC\) vuông tại B
Gọi H là hình chiếu vuông góc của S lên (ABC) \(\Rightarrow\) H là tâm đường tròn ngoại tiếp ABC (do SA=SB=SC)
\(\Rightarrow\) H trùng trung điểm AC
Gọi M là trung điểm SA \(\Rightarrow MH||SC\Rightarrow\) góc giữa SC và (SAB) bằng góc giữa MH và (SAB)
Gọi N là trung điểm AB \(\Rightarrow HN\perp AB\Rightarrow AB\perp\left(SHN\right)\)
Trong mp (SHN), kẻ \(HK\perp SN\Rightarrow HK\perp\left(SAB\right)\)
\(\Rightarrow\widehat{KMH}\) là góc giữa SC và (SAB)
\(SH=\sqrt{SA^2-\left(\dfrac{AC}{2}\right)^2}=...\)
\(MH=\dfrac{1}{2}SA=...\) (trung tuyến ứng với cạnh huyền)
\(NH=\dfrac{1}{2}BC=...\) (đường trung bình)
\(\Rightarrow\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{NH^2}\Rightarrow HK=...\)
\(\Rightarrow sin\widehat{KMH}=\dfrac{HK}{MH}=...\)
Gọi M, N, P lần lượt là trung điểm của SA, SB. AC. Để tính góc giữa hai đường thẳng SC và AB, ta cần tính ∠NMP.
Ta có:
Mặt khác:
Vậy góc giữa hai đường thẳng SC và AB bằng 60 ο .
Ta tính côsin của góc giữa hai vectơ S C → và A B → . Ta có
Theo giả thiết ta suy ra hình chóp có các tam giác đều là SAB, SAC và các tam giác vuông là ABC vuông tại A và SBC vuông tại S.
Vậy góc giữa hai vectơ A B → v à S C → bằng 120 o .
Dựng hình vuông ABDC
\(\Rightarrow SA=SB=SC=SD=2\) ; \(CD=AB=2\)
\(CD||AB\Rightarrow\widehat{\left(AB;SC\right)}=\widehat{\left(CD;SC\right)}=\widehat{SCD}\)
Tam giác SCD có \(SC=SD=CD\Rightarrow\Delta SCD\) đều
\(\Rightarrow\widehat{SCD}=60^0\)
Đáp án là B
Cách 1. Xác định và tính góc giữa hai đường thẳng.
Tam giác ABC vuông tại A
Do SA=SB=SC nên nếu gọi H là hình chiếu vuông góc của S lên (ABC) thì H là tâm đường tròn ngoại tiếp tam giác ABC mà tam giác ABC vuông tại A nên H là trung điểm của BC.
Dựng hình bình hành ABCD. Khi đó:(AB,SC)=(CD,SC) và CD=AB=a. Tam giác SBC vuông tại S
có SH là đường trùng tuyến nên SH= a 2 2
Tam giác CDH có
theo định lý Cô- Sin ta có
Tam giác SHD vuông tại H nên
Tam giác SCD có:
Cách 2. (Hay phù hợp với bài này) Ứng dụng tích vô hướng.
Theo giả thiết có
Ta có
Suy ra: