Một khúc gỗ có dạng hình khối nón có bán kính đáy bằng r=2m, chiều cao h=6m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ. Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Tính V.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Xét mặt cắt và lấy các điểm như hình vẽ bên cạnh.
Theo đề thì O A = O B = r = 30 cm và O H = h = 120 cm
Đặt O C = O D = R là bán kính đường tròn đáy của khúc gỗ khối trụ thì:
E C O H = A C O A = O A − O C O A ⇔ E C h = r − R R ⇔ E C = 4 30 − R
Thể tích khúc gỗ khối trụ là
V = π R 2 . E C = 4 π . R 2 . 30 − R ⇒ f R = 30 R 2 − R 3
Xét hàm số f R trên 0 ; 30 ⇒ max f R = 4000
Vậy thể tích lớn nhất của khối trụ V = 0 , 016 m 3
Đáp án D
Gọi r 0 ; h 0 lần lượt là bán kính đáy và chiều cao của khối trụ.
Theo giả thuyết, ta có:
r 0 r = h − h 0 h ⇔ r 0 = 30. 120 − h 0 120 = 30 − h 0 4
Suy ra thể tích khối trụ là:
V = π r 0 2 . h 0 = π 30 − h 0 4 2 . h 0 = π . 120 − h 0 2 . h 0 16
Xét hàm số f t = t 120 − t 2 với t ∈ 0 ; 120 suy ra: max 0 ; 120 f t = 256000
Vậy thể tích lớn nhất của khối trụ là:
V max = π 256000 16 . 1 100 3 = 0 , 016 π c m 3
Lời giải:
Gọi bán kính đáy khúc gỗ là $r$ (cm) thì:
Thể tích khúc gỗ:
$\pi r^2h=15\pi r^2$ (cm khối)
Thể tích hình nón:
$\frac{1}{3}\pi r^2h=5\pi r^2$ (cm khối)
Thể tích phần bỏ đi:
$15\pi r^2-5\pi r^2=640r$ (cm khối)
$10\pi r^2=640r$
$10\pi r=640$
$r=\frac{64}{\pi}$ (cm)
Thể tích khối nón: $5\pi r^2=5\pi.\frac{64^2}{\pi ^2}=\frac{20480}{\pi}$ (cm khối)
Nghe đề bài có vẻ sai sai. Nếu đề là $640\pi$ (cm khối) thì bạn cũng làm tương tự, $r=8$ (cm)