K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017


22 tháng 11 2018


29 tháng 12 2019


13 tháng 2 2019

Đáp án B

Phương pháp:

Tính bán kính hai khối cầu dựa vào các mối quan hệ đường tròn nội tiếp tam giác.

Tính thể tích hai khối cầu đã cho theo công thức V = 4 3 π . R 3 và suy ra kết luận.

Cách giải: Cắt món đồ chơi đó bằng mặt phẳng đứng đi qua trục hình nón.

Gọi P, H, K lần lượt là hình chiếu vuông góc của M, I, J trên AB.

Vì  B A C = 2 β = 60 ° , A M = 9 c m .

⇒ B M = M C = 3 3 A B = A C = 6 3 = B C ⇒ Δ A B C  đều.

Vì IM là bán kính mặt cầu nội tiếp tam giác đều ABC nên  I H = I M = A M 3 = 3

Gọi là tiếp tuyến chung của hai đường tròn. Vì Δ A B C đều nên dẫn đến Δ A B ' C '  đều.

Suy ra bán kính đường tròn nội tiếp:

J K = J G = A G 3 = A M 9 = 1

Vậy tổng thể tích là:

V 1 + V 2 = 4 3 π . I H 3 + 4 3 π . J K 3 = 112 π 3

Chú ý khi giải:

Cần chú ý vận dụng các mối quan hệ đường tròn nội, ngoại tiếp tam giác đều trong việc tính bán kính các khối cầu.

8 tháng 2 2017

13 tháng 7 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi r là bán kính của đường tròn đáy.

Ta có OA = r = l.cos α (với O là tâm của đường tròn đáy và A là một điểm trên đường tròn đó).

Ta suy ra: S xq = πrl = πl 2 cosα

Khối nón có chiều cao h = DO = lsin α . Do đó thể tích V của khối nón được tính theo công thức

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

19 tháng 5 2018

9 tháng 10 2018

Đáp án là D

25 tháng 9 2017

Đáp án đúng : D

10 tháng 6 2017