Cho hàm số y = f x có bảng biến thiên như sau
Đường thẳng đi qua hai điểm cực trị của đồ thị hàm số có phương trình là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Từ bảng biến thiên ta thấy f x ≥ 1 > 0 , ∀ x > − 1 nên phương trình f(x) = 0 có một nghiệm duy nhất x 0 < − 1
Mặt khác ta có y = f x = f x , f x ≥ 0 f x , f x < 0
Do đó ta có bảng biến thiên của y= f x
Từ bảng biến thiên ta thấy đồ thị hàm số y= f x có 3 điểm cực trị
Đáp án D
Ta vẽ lại bảng biến thiên của f x .
Từ bảng biến thiên này hàm số y = f x có cực trị
Chọn B.
Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x) với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm trên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Chọn B.
Cách 1: Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x)với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm nên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Đáp án: 3 cực trị
Chọn C
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là y =6x +13 .
Phương pháp trắc nghiệm:
Tại điểm cực trị của đồ thị hàm số phân thức ,
ta có: f ( x ) g ( x ) = f ' ( x ) g ' ( x )
Vậy phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là