Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy ; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó ( như hình vẽ ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu ( bỏ qua bề dày của lớp vỏ thủy tinh).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi bán kính đáy của cốc hình trụ là R. Suy ra chiều cao của cốc nước hình trụ là 6R bán kính của viên bi là R; bán kính đáy hình nón là R; chiều cao của hình nón là 4R
Thể tích khối nón là Thể tích khối nón là
Thể tích của cốc (thể tích lượng nước ban đầu) là
Suy ra thể tích nước còn lại: Vậy
Chọn D.
Đáp án C
Chọn hệ trục như hình vẽ và cắt mặt nước theo thiết diện là tam giác vuông PNM. Hình chiếu vuông góc của mặt phẳng thiết diện xuống đáy là nửa đường tròn đường kính AB
Ta có:
Đáp án B
Gọi R,h lần lượt là bán kính đáy và chiều cao của khối trụ ⇒ h = 6 R = 6 . Thể tích của khối trụ là V = πR 2 h = π . 1 2 . 6 = 6 π . Khối cầu bên trong khối trụ có bán kính là R = 1 ⇒ V C = 4 3 π . R 3 = 4 3 π . Khối nón bên trong khối trụ có bán kính đáy là R = 1 và chiều cao h - 2R = 4. Suy ra thể tích khối nón là V N = 1 3 πR 2 h = 1 3 . π . 1 2 . 4 = 4 3 π . Do đó, thể tích lượng nước còn lại bên trong khối trụ là V 0 = V - V C + V N = 6 π - 2 . 4 π 3 = 10 π 3 . Vậy tỉ số cần tính là T = V 0 V = 10 π 3 : 6 π = 5 9 .
Thể tích của ba viên bi:
\(3.\dfrac{4}{3}\pi.1^3=4\pi\left(cm^3\right)\)
Tổng thể tích nước và 3 viên bi:
\(4\pi+10.\pi.3^2=94\pi\left(cm^3\right)\)
Chiều cao mực nước:
\(h=\dfrac{94\pi}{\pi.3^2}\approx10,44\left(cm\right)\)